Publication:
Nonlinear delay differential equations involving population growth

dc.contributor.authorY. Lenburyen_US
dc.contributor.authorD. V. Giangen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherHanoi Institute of Mathematicsen_US
dc.date.accessioned2018-07-24T03:40:48Z
dc.date.available2018-07-24T03:40:48Z
dc.date.issued2004-09-01en_US
dc.description.abstractConditions are given on the function f, such that population χ(t) given by#x003C7;(t) = μχ(t) + f(χ(t - τ)), becomes extinct or remains globally stable. Our theorems are shown to be applicable to the Nicholson's model of blowflies and the population dynamics of baleen whales. In some of these cases, the function f is unimodal rather than monotone. © 2004 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationMathematical and Computer Modelling. Vol.40, No.5-6 (2004), 583-590en_US
dc.identifier.doi10.1016/j.mcm.2003.09.038en_US
dc.identifier.issn08957177en_US
dc.identifier.other2-s2.0-12944268244en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/21293
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=12944268244&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleNonlinear delay differential equations involving population growthen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=12944268244&origin=inwarden_US

Files

Collections