Publication:
Prednts: Improved and robust prediction of nitrotyrosine sites by integrating multiple sequence features

dc.contributor.authorAndi Nur Nilamyanien_US
dc.contributor.authorFirda Nurul Auliahen_US
dc.contributor.authorMohammad Ali Monien_US
dc.contributor.authorWatshara Shoombuatongen_US
dc.contributor.authorMd Mehedi Hasanen_US
dc.contributor.authorHiroyuki Kurataen_US
dc.contributor.otherKyushu Institute of Technologyen_US
dc.contributor.otherJapan Society for the Promotion of Scienceen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUNSW Medicineen_US
dc.date.accessioned2022-08-04T08:11:32Z
dc.date.available2022-08-04T08:11:32Z
dc.date.issued2021-03-01en_US
dc.description.abstractNitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyro-sine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.en_US
dc.identifier.citationInternational Journal of Molecular Sciences. Vol.22, No.5 (2021), 1-11en_US
dc.identifier.doi10.3390/ijms22052704en_US
dc.identifier.issn14220067en_US
dc.identifier.issn16616596en_US
dc.identifier.other2-s2.0-85102048754en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76264
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102048754&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemical Engineeringen_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.titlePrednts: Improved and robust prediction of nitrotyrosine sites by integrating multiple sequence featuresen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102048754&origin=inwarden_US

Files

Collections