Publication:
Automated magnetocardiogram classifications with Self-Organizing Maps(SOMs)

dc.contributor.authorThanakotn Naennaen_US
dc.contributor.authorMark J. Embrechtsen_US
dc.contributor.authorBolek Szymanskien_US
dc.contributor.authorKarsten Sternickelen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherRensselaer Polytechnic Instituteen_US
dc.contributor.otherCardioMag Imaging, Inc.en_US
dc.date.accessioned2018-07-24T03:40:48Z
dc.date.available2018-07-24T03:40:48Z
dc.date.issued2004-12-01en_US
dc.description.abstractThe main goal of this paper is to apply the Self-Organizing Maps (SOM), a novel learning and visualization technique, for abnormal and normal magnetocardiography (MCG) classification. MCG is the measurement of magnetic fields emitted by the electrophysiological activity of the human heart The interpretation of MCG recordings remains a challenge since there are no databases available from which precise rules could be educed. Hence, there is a need to automate interpretation of MCG measurements to minimize human input for the analysis. In this particular case SOMs are applied in detecting ischemia, which is a loss of conductivity because of damaged cell tissue in the heart and the main cause of heart attacks. © 2004 IEEE.en_US
dc.identifier.citationIEEE Region 10 Annual International Conference, Proceedings/TENCON. Vol.B, (2004)en_US
dc.identifier.other2-s2.0-27944508328en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/21291
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27944508328&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleAutomated magnetocardiogram classifications with Self-Organizing Maps(SOMs)en_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27944508328&origin=inwarden_US

Files

Collections