Publication:
Exponential Stability, Passivity, and Dissipativity Analysis of Generalized Neural Networks With Mixed Time-Varying Delays

dc.contributor.authorR. Saravanakumaren_US
dc.contributor.authorGrienggrai Rajchakiten_US
dc.contributor.authorChoon Ki Ahnen_US
dc.contributor.authorHamid Reza Karimien_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherMaejo Universityen_US
dc.contributor.otherKorea Universityen_US
dc.contributor.otherPolitecnico di Milanoen_US
dc.date.accessioned2018-12-21T07:19:42Z
dc.date.accessioned2019-03-14T08:03:23Z
dc.date.available2018-12-21T07:19:42Z
dc.date.available2019-03-14T08:03:23Z
dc.date.issued2017-07-13en_US
dc.description.abstractIEEE In this paper, we analyze the exponential stability, passivity, and (Q,S,R)-ɣ-dissipativity of generalized neural networks (GNNs) including mixed time-varying delays in state vectors. Novel exponential stability, passivity, and (Q,S,R)-ɣ-dissipativity criteria are developed in the form of linear matrix inequalities for continuous-time GNNs by constructing an appropriate Lyapunov-Krasovskii functional (LKF) and applying a new weighted integral inequality for handling integral terms in the time derivative of the established LKF for both single and double integrals. Some special cases are also discussed. The superiority of employing the method presented in this paper over some existing methods is verified by numerical examples.en_US
dc.identifier.citationIEEE Transactions on Systems, Man, and Cybernetics: Systems. (2017)en_US
dc.identifier.doi10.1109/TSMC.2017.2719899en_US
dc.identifier.issn21682232en_US
dc.identifier.issn21682216en_US
dc.identifier.other2-s2.0-85028950307en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/42334
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028950307&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleExponential Stability, Passivity, and Dissipativity Analysis of Generalized Neural Networks With Mixed Time-Varying Delaysen_US
dc.typeArticle in Pressen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028950307&origin=inwarden_US

Files

Collections