Publication:
Set Prediction in the Latent Space

dc.contributor.authorKonpat Preechakulen_US
dc.contributor.authorChawan Piansaddhayanonen_US
dc.contributor.authorBurin Naowaraten_US
dc.contributor.authorTirasan Khandhawiten_US
dc.contributor.authorSira Sriswasdien_US
dc.contributor.authorEkapol Chuangsuwanichen_US
dc.contributor.otherChulalongkorn Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherFaculty of Medicine, Chulalongkorn Universityen_US
dc.date.accessioned2022-08-04T08:27:45Z
dc.date.available2022-08-04T08:27:45Z
dc.date.issued2021-01-01en_US
dc.description.abstractSet prediction tasks require the matching between predicted set and ground truth set in order to propagate the gradient signal. Recent works have performed this matching in the original feature space thus requiring predefined distance functions. We propose a method for learning the distance function by performing the matching in the latent space learned from encoding networks. This method enables the use of teacher forcing which was not possible previously since matching in the feature space must be computed after the entire output sequence is generated. Nonetheless, a naive implementation of latent set prediction might not converge due to permutation instability. To address this problem, we provide sufficient conditions for permutation stability which begets an algorithm to improve the overall model convergence. Experiments on several set prediction tasks, including image captioning and object detection, demonstrate the effectiveness of our method. Code is available at https://github.com/phizaz/latent-set-prediction.en_US
dc.identifier.citationAdvances in Neural Information Processing Systems. Vol.31, (2021), 25516-25527en_US
dc.identifier.issn10495258en_US
dc.identifier.other2-s2.0-85131963371en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76688
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131963371&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleSet Prediction in the Latent Spaceen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131963371&origin=inwarden_US

Files

Collections