Publication:
Blister Package Classification Using ResNet-101 for Identification of Medication

dc.contributor.authorNarit Hnoohomen_US
dc.contributor.authorNagorn Maitrichiten_US
dc.contributor.authorPitchaya Chotivatunyuen_US
dc.contributor.authorVirach Sornlertlamvanichen_US
dc.contributor.authorSakorn Mekruksavanichen_US
dc.contributor.authorAnuchit Jitpattanakulen_US
dc.contributor.otherUniversity of Phayaoen_US
dc.contributor.otherKing Mongkut's University of Technology North Bangkoken_US
dc.contributor.otherMusashino Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2022-08-04T08:28:13Z
dc.date.available2022-08-04T08:28:13Z
dc.date.issued2021-01-01en_US
dc.description.abstractThis research aimed to fine-Tune image classification with deep learning techniques to verify the dispensing of prescriptions in hospitals. The proposed approach will be able to help pharmacies reduce the errors that lead to patients receiving the wrong medications. The image classification model uses a double-side transformed image dataset with download from Highlighted Deep Learning (HDL) paper. The dataset collected two-hundred seventy-Two images for types of medicine blister packs, including 72 images of front-side and backside merged with a horizontal cropped background, which were used for training the model. The blister package image dataset uses a deep learning model with a ResNet-101 pre-Trained model from the TensorFlow framework. The experimental results indicated that the TensorFlow framework achieved higher precision, recall, and F1-score than the Caffe framework. A ResNet-101 model with histogram equalization in the front and backside has the highest accuracy at 100 percent.en_US
dc.identifier.citationICSEC 2021 - 25th International Computer Science and Engineering Conference. (2021), 406-410en_US
dc.identifier.doi10.1109/ICSEC53205.2021.9684590en_US
dc.identifier.other2-s2.0-85125185670en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76707
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125185670&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleBlister Package Classification Using ResNet-101 for Identification of Medicationen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125185670&origin=inwarden_US

Files

Collections