Publication:
Membership matching score for invariant image recognition

dc.contributor.authorPisit Phokharatkulen_US
dc.contributor.authorSkul Kamnuanchaien_US
dc.contributor.authorChom Kimpanen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherRangsit Universityen_US
dc.date.accessioned2018-08-20T06:57:14Z
dc.date.available2018-08-20T06:57:14Z
dc.date.issued2006-09-01en_US
dc.description.abstractThis paper describes the use of membership matching score (MMS) to solve the recognition errors in invariant image recognition. The method works on boundary normalization of images, which to move the starting point back on the semi major axis of the ellipses. The set of maximum and minimum values are computed as the boundaries for the groups of the images. Then, the voting score of the membership of unknown boundary function in the inner boundary set are used as the indicator to measure the similarity level. The proposed method in this research is effective to solve the problem of invariant images. The results shown that, the elliptic Fourier descriptors and MMS are an efficient representation which can provide for reliable recognition.en_US
dc.identifier.citationWSEAS Transactions on Systems. Vol.5, No.9 (2006), 2056-2060en_US
dc.identifier.issn11092777en_US
dc.identifier.other2-s2.0-33746886577en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/23197
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33746886577&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleMembership matching score for invariant image recognitionen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33746886577&origin=inwarden_US

Files

Collections