Publication:
Enhancing High Humidity Stability of Quasi-2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering

dc.contributor.authorAtittaya Naikaewen_US
dc.contributor.authorPisist Kumnorkaewen_US
dc.contributor.authorThidarat Supasaien_US
dc.contributor.authorSujin Suwannaen_US
dc.contributor.authorRutchapon Hunkaoen_US
dc.contributor.authorToemsak Srikhirinen_US
dc.contributor.authorPongsakorn Kanjanaboosen_US
dc.contributor.otherKasetsart Universityen_US
dc.contributor.otherThailand Ministry of Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherThailand National Science and Technology Development Agencyen_US
dc.date.accessioned2020-01-27T08:31:25Z
dc.date.available2020-01-27T08:31:25Z
dc.date.issued2019-10-01en_US
dc.description.abstract© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Perovskite materials show excellent photovoltaic performance along with simple processing and low-energy requirements. Despite their high power conversion efficiency (PCE), instability in the presence of moisture is still a major challenge. An effective method to enhance perovskite stability is by reducing dimensionality through incorporation of long organic cations into the perovskite crystal, which improves charge-carrier extraction efficiency of the perovskites compared to conventional 3D perovskites. Quasi-2D perovskites or 2D/3D perovskites strike a good balance between PCE and stability, having much improved stability compared to 3D structures while retaining excellent optoelectronic properties. Yielding better thermal stability and broader absorption into the near-infrared, formamidinium iodide (FAI) doping has positive influences yet tends to cause poor surface morphology. Here, we introduce highly stable MA/FA-based quasi-2D perovskite fabricated by mixed cation doping (MCD), which is repeated deposition of MA and FA cations onto a quasi-2D perovskite layer. MCD enables better morphology and surface passivation, leading to fewer defects. MA/FA-based quasi-2D perovskite with quasi-cubic structure has high humidity resistivity, remaining intact after 90 days under 60% relative humidity without encapsulation. The underlying mechanism is further explained by binding and formation energies of cation mixture in solution and perovskite structure through computational analysis.en_US
dc.identifier.citationChemNanoMat. Vol.5, No.10 (2019), 1280-1288en_US
dc.identifier.doi10.1002/cnma.201900189en_US
dc.identifier.issn2199692Xen_US
dc.identifier.other2-s2.0-85066075044en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50785
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066075044&origin=inwarden_US
dc.subjectEnergyen_US
dc.subjectMaterials Scienceen_US
dc.titleEnhancing High Humidity Stability of Quasi-2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineeringen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066075044&origin=inwarden_US

Files

Collections