Publication:
Machine learning prediction models for mortality in intensive care unit patients with lactic acidosis

dc.contributor.authorPattharawin Pattharanitimaen_US
dc.contributor.authorCharat Thongprayoonen_US
dc.contributor.authorWisit Kaewputen_US
dc.contributor.authorFawad Qureshien_US
dc.contributor.authorFahad Qureshien_US
dc.contributor.authorTananchai Petnaken_US
dc.contributor.authorNarat Srivalien_US
dc.contributor.authorGuido Gembilloen_US
dc.contributor.authorOisin A. O’corragainen_US
dc.contributor.authorSupavit Chesdachaien_US
dc.contributor.authorSaraschandra Vallabhajosyulaen_US
dc.contributor.authorPramod K. Guruen_US
dc.contributor.authorMichael A. Maoen_US
dc.contributor.authorVesna D. Garovicen_US
dc.contributor.authorJohn J. Dillonen_US
dc.contributor.authorWisit Cheungpasitpornen_US
dc.contributor.otherRamathibodi Hospitalen_US
dc.contributor.otherWake Forest University School of Medicineen_US
dc.contributor.otherSt. Agnes Hospitalen_US
dc.contributor.otherTemple University Hospitalen_US
dc.contributor.otherUMKC School of Medicineen_US
dc.contributor.otherFaculty of Medicine, Thammasat Universityen_US
dc.contributor.otherUniversità degli Studi di Messinaen_US
dc.contributor.otherPhramongkutklao College of Medicineen_US
dc.contributor.otherMayo Clinicen_US
dc.contributor.otherMayo Clinic in Jacksonville, Floridaen_US
dc.date.accessioned2022-08-04T09:08:13Z
dc.date.available2022-08-04T09:08:13Z
dc.date.issued2021-11-01en_US
dc.description.abstractBackground: Lactic acidosis is the most common cause of anion gap metabolic acidosis in the intensive care unit (ICU), associated with poor outcomes including mortality. We sought to compare machine learning (ML) approaches versus logistic regression analysis for prediction of mortality in lactic acidosis patients admitted to the ICU. Methods: We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify ICU adult patients with lactic acidosis (se-rum lactate ≥4 mmol/L). The outcome of interest was hospital mortality. We developed prediction models using four ML approaches consisting of random forest (RF), decision tree (DT), extreme gradient boosting (XGBoost), artificial neural network (ANN), and statistical modeling with for-ward stepwise logistic regression using the testing dataset. We then assessed model performance using area under the receiver operating characteristic curve (AUROC), accuracy, precision, error rate, Matthews correlation coefficient (MCC), F1 score, and assessed model calibration using the Brier score, in the independent testing dataset. Results: Of 1919 lactic acidosis ICU patients, 1535 and 384 were included in the training and testing dataset, respectively. Hospital mortality was 30%. RF had the highest AUROC at 0.83, followed by logistic regression 0.81, XGBoost 0.81, ANN 0.79, and DT 0.71. In addition, RF also had the highest accuracy (0.79), MCC (0.45), F1 score (0.56), and lowest error rate (21.4%). The RF model was the most well-calibrated. The Brier score for RF, DT, XGBoost, ANN, and multivariable logistic regression was 0.15, 0.19, 0.18, 0.19, and 0.16, respec-tively. The RF model outperformed multivariable logistic regression model, SOFA score (AUROC 0.74), SAP II score (AUROC 0.77), and Charlson score (AUROC 0.69). Conclusion: The ML prediction model using RF algorithm provided the highest predictive performance for hospital mortality among ICU patient with lactic acidosis.en_US
dc.identifier.citationJournal of Clinical Medicine. Vol.10, No.21 (2021)en_US
dc.identifier.doi10.3390/jcm10215021en_US
dc.identifier.issn20770383en_US
dc.identifier.other2-s2.0-85117912044en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/77715
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117912044&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleMachine learning prediction models for mortality in intensive care unit patients with lactic acidosisen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117912044&origin=inwarden_US

Files

Collections