Publication:
OsFP: A web server for predicting the oligomeric states of fluorescent proteins

dc.contributor.authorSaw Simeonen_US
dc.contributor.authorWatshara Shoombuatongen_US
dc.contributor.authorNuttapat Anuwongcharoenen_US
dc.contributor.authorLikit Preeyanonen_US
dc.contributor.authorVirapong Prachayasittikulen_US
dc.contributor.authorJarl E.S. Wikbergen_US
dc.contributor.authorChanin Nantasenamaten_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUppsala Universiteten_US
dc.date.accessioned2018-12-11T02:31:42Z
dc.date.accessioned2019-03-14T08:04:29Z
dc.date.available2018-12-11T02:31:42Z
dc.date.available2019-03-14T08:04:29Z
dc.date.issued2016-12-20en_US
dc.description.abstract© 2016 The Author(s). Background: Currently, monomeric fluorescent proteins (FP) are ideal markers for protein tagging. The prediction of oligomeric states is helpful for enhancing live biomedical imaging. Computational prediction of FP oligomeric states can accelerate the effort of protein engineering efforts of creating monomeric FPs. To the best of our knowledge, this study represents the first computational model for predicting and analyzing FP oligomerization directly from the amino acid sequence. Results: After data curation, an exhaustive data set consisting of 397 non-redundant FP oligomeric states was compiled from the literature. Results from benchmarking of the protein descriptors revealed that the model built with amino acid composition descriptors was the top performing model with accuracy, sensitivity and specificity in excess of 80% and MCC greater than 0.6 for all three data subsets (e.g. training, tenfold cross-validation and external sets). The model provided insights on the important residues governing the oligomerization of FP. To maximize the benefit of the generated predictive model, it was implemented as a web server under the R programming environment. Conclusion: osFP affords a user-friendly interface that can be used to predict the oligomeric state of FP using the protein sequence. The advantage of osFP is that it is platform-independent meaning that it can be accessed via a web browser on any operating system and device. osFP is freely accessible at http://codes.bio/osfp/ while the source code and data set is provided on GitHub at https://github.com/chaninn/osFP/. Graphical Abstract.en_US
dc.identifier.citationJournal of Cheminformatics. Vol.8, No.1 (2016)en_US
dc.identifier.doi10.1186/s13321-016-0185-8en_US
dc.identifier.issn17582946en_US
dc.identifier.other2-s2.0-85006380259en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43417
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006380259&origin=inwarden_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.titleOsFP: A web server for predicting the oligomeric states of fluorescent proteinsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006380259&origin=inwarden_US

Files

Collections