Publication:
Fast PCA via UTV decomposition and application on EEG analysis

dc.contributor.authorYodchanan Wongsawaten_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-13T06:27:31Z
dc.date.available2018-09-13T06:27:31Z
dc.date.issued2009-01-01en_US
dc.description.abstractIn the mean square error sense, principal component analysis (PCA) or Karhunen-Loeve transform (KLT) can optimally summarize the high dimensional data into only a few meaningful ones. However, for the biomedical signal analysis, e.g. electroencephalogram (EEG), the data need to be updated or downdated very often. This fact makes the PCA impractical to be employed, especially in real-time signal analysis. In this paper, we propose the fast computational method for approximating the PCA such that the new transform, called fast PCA (fastPCA), can easily be updated and downdated. The fastPCA is calculated via the UTV decomposition which is the method normally used to approximate the rank-revealing property of the singular value decomposition (SVD). The merit of the fastPCA is also illustrated via the application on EEG analysis. ©2009 IEEE.en_US
dc.identifier.citationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009. (2009), 5669-5672en_US
dc.identifier.doi10.1109/IEMBS.2009.5333119en_US
dc.identifier.other2-s2.0-77950993014en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27305
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950993014&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectEngineeringen_US
dc.subjectMedicineen_US
dc.titleFast PCA via UTV decomposition and application on EEG analysisen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950993014&origin=inwarden_US

Files

Collections