Publication: Histopathological effect and stress response of mantle proteome following TBT exposure in the Hooded oyster Saccostrea cucullata
Issued Date
2016-11-01
Resource Type
ISSN
18736424
02697491
02697491
Other identifier(s)
2-s2.0-84991811300
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Environmental Pollution. Vol.218, (2016), 855-862
Suggested Citation
Phattirapa Khondee, Chantragan Srisomsap, Daranee Chokchaichamnankit, Jisnuson Svasti, Richard J. Simpson, Sutin Kingtong Histopathological effect and stress response of mantle proteome following TBT exposure in the Hooded oyster Saccostrea cucullata. Environmental Pollution. Vol.218, (2016), 855-862. doi:10.1016/j.envpol.2016.08.011 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/40652
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Histopathological effect and stress response of mantle proteome following TBT exposure in the Hooded oyster Saccostrea cucullata
Other Contributor(s)
Abstract
© 2016 Elsevier Ltd Tributyltin (TBT), an environmental pollutant in marine ecosystems, is toxic to organisms. Although contamination by and bioaccumulation and toxicity of this compound have been widely reported, its underlying molecular mechanisms remain unclear. In the present study, we exposed the Hooded oyster Saccostrea cucullata to TBT to investigate histopathological effects and proteome stress response. Animals were exposed to three TBT sub-lethal concentrations, 10, 50 and 150 μg/l for 48 h. TBT produced stress leading to histopathological changes in oyster tissues including mantle, gill, stomach and digestive diverticula. TBT induced mucocyte production in epithelia and hemocyte aggregation in connective tissue. Cell necrosis occurred when exposure dosages were high. Comparative proteome analyses of mantle protein of oysters exposed to 10 μg/l and control animals were analyzed by a 2-DE based proteomic approach. In total, 32 protein spots were found to differ (p < 0.05). Of these, 17 proteins were identified which included 14 up-regulated and 3 down-regulated proteins. TBT induced the expression of proteins involved in defensive mechanisms (HSP-78, HSP-70, aldehyde dehydrogenase and catalase), calcium homeostasis (VDAC-3), cytoskeleton and cytoskeleton-associated proteins, energy metabolism and amino acid metabolism. Our study revealed that TBT disturbs calcium homeostasis via VDAC-3 protein in mantle and this probably is the key molecular mechanism of TBT acting to distort shell calcification. Moreover, proteins involved in cell structure (tubulin-alpha and tubulin-beta) and protein synthesis were reduced after TBT exposure. Additionally, differential proteins obtained from this work will be useful as potential TBT biomarkers.