Publication:
Feasibility of Prediction Model for Internal Tumor Target Volume from 4-D Computed Tomography of Lung cancer

dc.contributor.authorUtumporn Puangragsaen_US
dc.contributor.authorPitchayakorn Lomvisaien_US
dc.contributor.authorPattarapong Phasukkiten_US
dc.contributor.authorSarut Puangragsaen_US
dc.contributor.authorJiraporn Setakornnukulen_US
dc.contributor.authorNongluck Houngkamhangen_US
dc.contributor.authorPetchanon Thongsermen_US
dc.contributor.authorPittaya Dankulchaien_US
dc.contributor.otherSiriraj Hospitalen_US
dc.contributor.otherKing Mongkut's Institute of Technology Ladkrabangen_US
dc.date.accessioned2022-08-04T08:28:08Z
dc.date.available2022-08-04T08:28:08Z
dc.date.issued2021-01-01en_US
dc.description.abstract4-Dimensional computed tomography (4DCT) is the most common technique to determine organ movement due to breathing motion. However, the ability of 4DCT to acquire CT images as a function of the respiratory phase increases higher radiation dose. To reduce the patient's radiation dose, this study created lung motion prediction models used to estimate tumor target movement in ten respiratory phases by detecting only external organ movement during a complete respiration cycle without radiation with Kinect. The average overall amplitude difference between RPM and Kinect signals in the phantom experiment was 0.02 ± 0.1 mm. F1 score of 100% for all most all classifications except classification 2,3,6,7 and 8 of 85%,83%,90%, 84%,85% where irregular breathing pattern. Essentially, the proposed tumor movement scheme's total accuracy (average of F1 scores) is 92.7 %. Deep learning model can predict tumor motion range and classification zone by used detection of the external respiratory signalen_US
dc.identifier.citation16th International Joint Symposium on Artificial Intelligence and Natural Language Processing, iSAI-NLP 2021. (2021)en_US
dc.identifier.doi10.1109/iSAI-NLP54397.2021.9678177en_US
dc.identifier.other2-s2.0-85125344420en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76703
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125344420&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleFeasibility of Prediction Model for Internal Tumor Target Volume from 4-D Computed Tomography of Lung canceren_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125344420&origin=inwarden_US

Files

Collections