Publication:
Data-driven signal decomposition method

dc.contributor.authorPornchai Chanyagornen_US
dc.contributor.authorMasud Caderen_US
dc.contributor.authorHarold H. Szuen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherInternational Finance Corporationen_US
dc.contributor.otherGeorge Washington Universityen_US
dc.date.accessioned2018-06-21T08:13:39Z
dc.date.available2018-06-21T08:13:39Z
dc.date.issued2005-12-01en_US
dc.description.abstractThis paper introduces the data-driven signal decomposition method based on the Empirical Mode Decomposition (EMD) technique. The decomposition process uses the data themselves to derive the base function in order to decompose the one-dimensional signal into a finite set of intrinsic mode signals. The novelty of EMD is that the decomposition does not use any artificial data windowing which implies fewer artifacts in the decomposed signals. The results show that the method can be effectively used in analyzing non-stationary signals. Furthermore, we applied this method to analyze closing equity prices of a financial stock. The result demonstrates the usefulness of the method in analyzing financial time series data, and some practical considerations in envelope estimation. © 2005 IEEE.en_US
dc.identifier.citationICIA 2005 - Proceedings of 2005 International Conference on Information Acquisition. Vol.2005, (2005), 464-467en_US
dc.identifier.other2-s2.0-33947190421en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/16503
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33947190421&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleData-driven signal decomposition methoden_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33947190421&origin=inwarden_US

Files

Collections