Publication:
Roles of dinuclear bridging bidentate zinc/stearate complexes in sulfur cross-linking of isoprene rubber

dc.contributor.authorYuko Ikedaen_US
dc.contributor.authorYuta Sakakien_US
dc.contributor.authorYoritaka Yasudaen_US
dc.contributor.authorPreeyanuch Junkongen_US
dc.contributor.authorTakumi Ohashien_US
dc.contributor.authorKosuke Miyajien_US
dc.contributor.authorHisayoshi Kobayashien_US
dc.contributor.otherKyoto Institute of Technologyen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T08:12:22Z
dc.date.available2020-01-27T08:12:22Z
dc.date.issued2019-06-10en_US
dc.description.abstract© 2019 American Chemical Society. The roles of the intermediate [Zn2(μ-O2CC17H35)2]2+·4X (X; a hydroxyl group, water, and/or a rubber segment) in the sulfur cross-linking of isoprene rubber are clarified for the first time using in situ time-resolved zinc K-edge X-ray absorption fine structure spectroscopy and in situ time-resolved infrared spectroscopy along with density functional theory calculations. The combined experimental and computational investigation suggests that N-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine (CBS) is most easily hydrolyzed on the dinuclear bridging bidentate zinc/stearate intermediate, when a water molecule coordinates to the zinc cation opposite the zinc cation which is coordinated by the nitrogen atom of the benzothiazole group in CBS. The newly produced intermediate with coordinated 1,3-benzothiazole-2-thiolate and cyclohexylamine (CHA) is also found to most readily induce a sulfur insertion among possible candidates to generate subsequent intermediates, when CHA is removed from the intermediate and a water molecule coordinates to the zinc cation which is coordinated by the nitrogen atom of benzothiazole group. The novel dinuclear bridging bidentate zinc/stearate complexes apparently accelerate the sulfur cross-linking of isoprene rubber. Despite the long history of rubber science and technology, these intermediates have been mysterious. The present work will clarify the vulcanization mechanism and will advance the rubber chemistry for a new paradigm of vulcanization technique in the 21st century.en_US
dc.identifier.citationOrganometallics. Vol.38, No.11 (2019), 2363-2380en_US
dc.identifier.doi10.1021/acs.organomet.9b00193en_US
dc.identifier.issn15206041en_US
dc.identifier.issn02767333en_US
dc.identifier.other2-s2.0-85067052013en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50564
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067052013&origin=inwarden_US
dc.subjectChemistryen_US
dc.titleRoles of dinuclear bridging bidentate zinc/stearate complexes in sulfur cross-linking of isoprene rubberen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067052013&origin=inwarden_US

Files

Collections