Publication:
Diagnosing malaria patients with plasmodium falciparum and vivax using deep learning for thick smear images

dc.contributor.authorYasmin M. Kassimen_US
dc.contributor.authorFeng Yangen_US
dc.contributor.authorHang Yuen_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorStefan Jaegeren_US
dc.contributor.otherFaculty of Tropical Medicine, Mahidol Universityen_US
dc.contributor.otherHarvard T.H. Chan School of Public Healthen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherNational Institutes of Health (NIH)en_US
dc.date.accessioned2022-08-04T08:04:27Z
dc.date.available2022-08-04T08:04:27Z
dc.date.issued2021-11-01en_US
dc.description.abstractWe propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by Plasmodium falciparum or Plasmodium vivax. PlasmodiumVF-Net first detects candidates for Plasmodium parasites using a Mask Regional-Convolutional Neural Network (Mask R-CNN), filters out false positives using a ResNet50 classifier, and then follows a new approach to recognize parasite species based on a score obtained from the number of detected patches and their aggregated probabilities for all of the patient images. Reporting a patient-level decision is highly challenging, and therefore reported less often in the literature, due to the small size of detected parasites, the similarity to staining artifacts, the similarity of species in different development stages, and illumination or color variations on patient-level. We use a manually annotated dataset consisting of 350 patients, with about 6000 images, which we make publicly available together with this manuscript. Our framework achieves an overall accuracy above 90% on image and patient-level.en_US
dc.identifier.citationDiagnostics. Vol.11, No.11 (2021)en_US
dc.identifier.doi10.3390/diagnostics11111994en_US
dc.identifier.issn20754418en_US
dc.identifier.other2-s2.0-85118862165en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/75974
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85118862165&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleDiagnosing malaria patients with plasmodium falciparum and vivax using deep learning for thick smear imagesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85118862165&origin=inwarden_US

Files

Collections