Publication:
Granules for learning behavior

dc.contributor.authorSumalee Sonamthiangaen_US
dc.contributor.authorKanlaya Naruedomkulen_US
dc.contributor.authorNick Cerconeen_US
dc.contributor.otherUbon Rajathanee Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherYork Universityen_US
dc.date.accessioned2018-10-19T04:51:49Z
dc.date.available2018-10-19T04:51:49Z
dc.date.issued2013-07-16en_US
dc.description.abstract© 2013 The authors and IOS Press. All rights reserved. This chapter presents an innovative approach to discover granular learning behavior patterns of students learning interactions with an intelligent tutoring system (ITS). The approach is domain independent and able to manage learning behavior uncertainty. An N-gram analysis is used to model the learning behavior from the learning action streams to obtain regular and irregular learning behavior patterns. Then, the N-gram models are clustered into a hierarchy using a rough set-based map granule. The hierarchical pattern can be used to improve the domain knowledge of an ITS in predicting student's actions, sequencing problems to be solved, and adjusting hint mechanisms.en_US
dc.identifier.citationComputational Approaches to Assistive Technologies for People with Disabilities. Vol.253, (2013), 191-204en_US
dc.identifier.doi10.3233/978-1-61499-258-5-191en_US
dc.identifier.other2-s2.0-85021328504en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/31638
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85021328504&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleGranules for learning behavioren_US
dc.typeChapteren_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85021328504&origin=inwarden_US

Files

Collections