Publication:
Convergence in hausdorff content of generalized simultaneous padé approximants

dc.contributor.authorMethawee Wajasaten_US
dc.contributor.authorNattapong Bosuwanen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-06-02T04:52:27Z
dc.date.available2020-06-02T04:52:27Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2020 by the Mathematical Association of Thailand. Given a vector of the approximated functions analytic on a neighborhood of some compact subset of the complex plane with simply connected complement in the extended complex plane, we prove convergences in Hausdorff content of the corresponding two generalizations of type II Hermite-Pade approximants on some certain sequences. These two generalizations are based on orthogonal and Faber polynomial expansions. As consequences of these convergence results, we give alternate proofs of Montessus de Ballore type theorems for these generalizations.en_US
dc.identifier.citationThai Journal of Mathematics. Vol.2020, No.Special Issue (2020), 1-23en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85084511531en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/56225
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084511531&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleConvergence in hausdorff content of generalized simultaneous padé approximantsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084511531&origin=inwarden_US

Files

Collections