Publication:
Graphene-Based Aqueous Magnesium Ion Hybrid Supercapacitors with an Appealing Energy Density Advanced by a KI Additive

dc.contributor.authorNavajsharif S. Shaikhen_US
dc.contributor.authorNavnath S. Padalkaren_US
dc.contributor.authorVaibhav C. Lokhandeen_US
dc.contributor.authorTaeksoo Jien_US
dc.contributor.authorSusmita P. Patilen_US
dc.contributor.authorSandip R. Sabaleen_US
dc.contributor.authorHaseen M. Shaikhen_US
dc.contributor.authorJasmin S. Shaikhen_US
dc.contributor.authorSupareak Praserthdamen_US
dc.contributor.authorPongsakorn Kanjanaboosen_US
dc.contributor.otherD. Y. Patil University, Kolhapuren_US
dc.contributor.otherSardar Patel College of Engineering, Mumbaien_US
dc.contributor.otherChulalongkorn Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherChonnam National Universityen_US
dc.contributor.otherMinistry of Higher Education, Science, Research and Innovationen_US
dc.contributor.otherJaysingpur Collegeen_US
dc.date.accessioned2022-08-04T08:19:53Z
dc.date.available2022-08-04T08:19:53Z
dc.date.issued2021-01-01en_US
dc.description.abstractThe electric double-layer capacitance (EDLC)-based capacitor is hindered with low capacitance and low energy density. Here, in this report, we focused on the fabrication of a symmetric device having graphene as an EDLC electrode material and redox additive KI-integrated aqueous MgSO4 as an electrolyte. The high surface area of graphene was produced by annealing of graphene oxide in an inert atmosphere and confirmed through X-ray photoelectron spectroscopy and Raman spectroscopy. The strategic 6% KI into MgSO4 delivered the highest specific capacitance with a wide working window of 0.7 V. Electrochemical measurements showed that graphene delivered a significantly greater specific capacitance (727.6 F/g) in a KI-integrated electrolyte (MgSO4 + KI) compared to 89.2 F/g in a MgSO4 electrolyte, owing to species such as IO3- and I3-(oxidation states of I). The symmetric device showed the maximum energy density (ED) of 69.3 Wh/kg, which can be achieved at the power density of 2.5 kW/kg, better than reported values in monovalent-based electrolyte devices. In this report, the charge storage mechanism, interactive association between Mg2+ ion insertion/extraction, and integration of redox KI had been comprehensively studied. The strategy shows a new path in the design of excellent ED capacitors without compromising the supercapacitor properties.en_US
dc.identifier.citationEnergy and Fuels. (2021)en_US
dc.identifier.doi10.1021/acs.energyfuels.1c03278en_US
dc.identifier.issn15205029en_US
dc.identifier.issn08870624en_US
dc.identifier.other2-s2.0-85134005294en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76552
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85134005294&origin=inwarden_US
dc.subjectChemical Engineeringen_US
dc.subjectEnergyen_US
dc.titleGraphene-Based Aqueous Magnesium Ion Hybrid Supercapacitors with an Appealing Energy Density Advanced by a KI Additiveen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85134005294&origin=inwarden_US

Files

Collections