Publication:
Functional programming for dynamic and large data with self-adjusting computation

dc.contributor.authorYan Chenen_US
dc.contributor.authorUmut A. Acaren_US
dc.contributor.authorKanat Tangwongsanen_US
dc.contributor.otherMax Planck Institute for Software Systemsen_US
dc.contributor.otherCarnegie Mellon Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-09T02:11:26Z
dc.date.available2018-11-09T02:11:26Z
dc.date.issued2014-01-01en_US
dc.description.abstractCombining type theory, language design, and empirical work, we present techniques for computing with large and dynamically changing datasets. Based on lambda calculus, our techniques are suitable for expressing a diverse set of algorithms on large datasets and, via self-adjusting computation, enable computations to respond automatically to changes in their data. To improve the scalability of self-adjusting computation, we present a type system for precise dependency tracking that minimizes the time and space for storing dependency metadata. The type system eliminates an important assumption of prior work that can lead to recording spurious dependencies. We present a type-directed translation algorithm that generates correct self-adjusting programs without relying on this assumption. We then show a probabilistic-chunking technique to further decrease space usage by controlling the fundamental space-time tradeoff in self-adjusting computation. We implement and evaluate these techniques, showing promising results on challenging benchmarks involving large graphs. © 2014 ACM.en_US
dc.identifier.citationProceedings of the ACM SIGPLAN International Conference on Functional Programming, ICFP. (2014), 227-240en_US
dc.identifier.doi10.1145/2628136.2628150en_US
dc.identifier.other2-s2.0-84907012204en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/33750
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84907012204&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleFunctional programming for dynamic and large data with self-adjusting computationen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84907012204&origin=inwarden_US

Files

Collections