Publication:
Application of image processing and computer vision on rice seed germination analysis

dc.contributor.authorB. Lurstwuten_US
dc.contributor.authorC. Pornpanomchaien_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:50:11Z
dc.date.accessioned2019-03-14T08:01:29Z
dc.date.available2018-12-11T02:50:11Z
dc.date.available2019-03-14T08:01:29Z
dc.date.issued2016-01-01en_US
dc.description.abstract© Research India Publications. This paper presents a machine vision application designed for rice seed germination analysis by using image processing and computer vision technology. The application is called “Rice Seed Germination Analysis (RSGA)”. RSGA consists of five main processing modules which are image acquisition, image preprocessing, feature extraction, quality control analysis and quality results. The experiments is conducted on six variation Thai rice seed species of CP111, RD41, Chiang Phatthalung, Sang Yod Phattalung, Phitsanulok 2 and Chai Nat 1 in Bangkok and Chiangmai province of Thailand. RSGA extracts four main features which are color, size, shape, and texture. Then, RSGA applies Artificial Neural Network techniques in crop germination prediction. The precision rate is 93.06 percent, with the speed 8.31 seconds per image.en_US
dc.identifier.citationInternational Journal of Applied Engineering Research. Vol.11, No.9 (2016), 6800-6807en_US
dc.identifier.issn09739769en_US
dc.identifier.issn09734562en_US
dc.identifier.other2-s2.0-84994101991en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/40619
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994101991&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleApplication of image processing and computer vision on rice seed germination analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994101991&origin=inwarden_US

Files

Collections