Publication:
Work-efficient parallel union-find

dc.contributor.authorNatcha Simsirien_US
dc.contributor.authorKanat Tangwongsanen_US
dc.contributor.authorSrikanta Tirthapuraen_US
dc.contributor.authorKun Lung Wuen_US
dc.contributor.otherIBM Thomas J. Watson Research Centeren_US
dc.contributor.otherUniversity of Massachusetts Amhersten_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherIowa State Universityen_US
dc.date.accessioned2019-08-23T10:57:47Z
dc.date.available2019-08-23T10:57:47Z
dc.date.issued2018-02-25en_US
dc.description.abstractCopyright © 2017 John Wiley & Sons, Ltd. The incremental graph connectivity (IGC) problem is to maintain a data structure that can quickly answer whether two given vertices in a graph are connected, while allowing more edges to be added to the graph. IGC is a fundamental problem and can be solved efficiently in the sequential setting using a solution to the classical union-find problem. However, sequential solutions are not sufficient to handle modern-day large, rapidly-changing graphs where edge updates arrive at a very high rate. We present the first shared-memory parallel data structure for union-find (equivalently, IGC) that is both provably work-efficient (ie, performs no more work than the best sequential counterpart) and has polylogarithmic parallel depth. We also present a simpler algorithm with slightly worse theoretical properties, but which is easier to implement and has good practical performance. Our experiments on large graph streams with various degree distributions show that it has good practical performance, capable of processing hundreds of millions of edges per second using a 20-core machine.en_US
dc.identifier.citationConcurrency Computation. Vol.30, No.4 (2018)en_US
dc.identifier.doi10.1002/cpe.4333en_US
dc.identifier.issn15320634en_US
dc.identifier.issn15320626en_US
dc.identifier.other2-s2.0-85031108078en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/45649
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031108078&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleWork-efficient parallel union-finden_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031108078&origin=inwarden_US

Files

Collections