Publication: C<sup>*</sup>-algebra sequence spaces and bounded linear operators
dc.contributor.author | S. Leelahanon | en_US |
dc.contributor.author | P. Chaisuriya | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Thammasat University | en_US |
dc.date.accessioned | 2018-09-13T06:48:01Z | |
dc.date.available | 2018-09-13T06:48:01Z | |
dc.date.issued | 2009-03-01 | en_US |
dc.description.abstract | In this paper, A denotes a C*-algebra with identity. The spaces l2 (A) ⊆ lb2(A) are defined; these are noncommutative generalizations of the classical sequence space l 2. The dual space l2(A)* is isometrically isomorphic to the space S(A) of sequences of bounded linear functionals on A satisfying a weak absolute convergence condition. Conditions for reflexivity of l2(A) are given. Furthermore, the space l2 (A) is also a Hilbert A-module. The space of adjointable bounded linear operators on l 2 (A) is studied. © SAS International Publications. | en_US |
dc.identifier.citation | Journal of Analysis and Applications. Vol.7, No.1 (2009), 31-52 | en_US |
dc.identifier.issn | 09725954 | en_US |
dc.identifier.other | 2-s2.0-83055160889 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/27781 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=83055160889&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | C<sup>*</sup>-algebra sequence spaces and bounded linear operators | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=83055160889&origin=inward | en_US |