Publication:
When is a semiperfect ring right PF

dc.contributor.authorBanh Duc Dungen_US
dc.contributor.authorLe Duc Thoangen_US
dc.contributor.authorNguyen Van Sanhen_US
dc.contributor.otherUniversity of Transport in Hochiminh Cityen_US
dc.contributor.otherPhu Yen Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-07-12T02:34:40Z
dc.date.available2018-07-12T02:34:40Z
dc.date.issued2008-09-01en_US
dc.description.abstractIt is well-known that a ring R is right PF if and only if it is semiperfect and right self-injective with essential right socle. In this note, it is shown that a ring R is right PF if and only if u.dim(RR) < ∞ and every colocal, injective right R-module is projective. Consequently, a semiperfect ring R is right PF if and only if the two classes of colocal injective right R-modules and local projective right modules coincide. © 2008 World Scientific Publishing Company.en_US
dc.identifier.citationAsian-European Journal of Mathematics. Vol.1, No.3 (2008), 353-358en_US
dc.identifier.doi10.1142/S1793557108000308en_US
dc.identifier.issn17937183en_US
dc.identifier.issn17935571en_US
dc.identifier.other2-s2.0-84857562717en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/19415
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857562717&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleWhen is a semiperfect ring right PFen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857562717&origin=inwarden_US

Files

Collections