Publication:
Granules for learning behavior

dc.contributor.authorSumalee Sonamthiangen_US
dc.contributor.authorKanlaya Naruedomkulen_US
dc.contributor.authorNick Cerconeen_US
dc.contributor.otherUbon Rajathanee Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherYork Universityen_US
dc.date.accessioned2018-10-19T04:50:48Z
dc.date.available2018-10-19T04:50:48Z
dc.date.issued2013-12-01en_US
dc.description.abstractThis chapter presents an innovative approach to discover granular learning behavior patterns of students learning interactions with an intelligent tutoring system (ITS). The approach is domain independent and able to manage learning behavior uncertainty. An N-gram analysis is used to model the learning behavior from the learning action streams to obtain regular and irregular learning behavior patterns. Then, the N-gram models are clustered into a hierarchy using a rough set-based map granule. The hierarchical pattern can be used to improve the domain knowledge of an ITS in predicting student's actions, sequencing problems to be solved, and adjusting hint mechanisms. © 2013 The authors and IOS Press. All rights reserved.en_US
dc.identifier.citationFrontiers in Artificial Intelligence and Applications. Vol.253, (2013), 191-204en_US
dc.identifier.doi10.3233/978-1-61499-258-5-191en_US
dc.identifier.issn09226389en_US
dc.identifier.other2-s2.0-84894583104en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/31603
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84894583104&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleGranules for learning behavioren_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84894583104&origin=inwarden_US

Files

Collections