Publication:
Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry

dc.contributor.authorElisa Castagnolaen_US
dc.contributor.authorSanitta Thongpangen_US
dc.contributor.authorMieko Hirabayashien_US
dc.contributor.authorGiorgio Navaen_US
dc.contributor.authorSurabhi Nimbalkaren_US
dc.contributor.authorTri Nguyenen_US
dc.contributor.authorSandra Laraen_US
dc.contributor.authorAlexis Oyawaleen_US
dc.contributor.authorJames Bunnellen_US
dc.contributor.authorChet Moritzen_US
dc.contributor.authorSam Kassegneen_US
dc.contributor.otherUniversity of California, Riversideen_US
dc.contributor.otherSan Diego State Universityen_US
dc.contributor.otherUniversity of Washingtonen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherBill & Melinda Gates Center for Computer Science & Engineeringen_US
dc.date.accessioned2022-08-04T08:08:21Z
dc.date.available2022-08-04T08:08:21Z
dc.date.issued2021-06-21en_US
dc.description.abstractProgress in real-time, simultaneous in vivo detection of multiple neurotransmitters will help accelerate advances in neuroscience research. The need for development of probes capable of stable electrochemical detection of rapid neurotransmitter fluctuations with high sensitivity and selectivity and sub-second temporal resolution has, therefore, become compelling. Additionally, a higher spatial resolution multi-channel capability is required to capture the complex neurotransmission dynamics across different brain regions. These research needs have inspired the introduction of glassy carbon (GC) microelectrode arrays on flexible polymer substrates through carbon MEMS (C-MEMS) microfabrication process followed by a novel pattern transfer technique. These implantable GC microelectrodes provide unique advantages in electrochemical detection of electroactive neurotransmitters through the presence of active carboxyl, carbonyl, and hydroxyl functional groups. In addition, they offer fast electron transfer kinetics, capacitive electrochemical behavior, and wide electrochemical window. Here, we combine the use of these GC microelectrodes with the fast scan cyclic voltammetry (FSCV) technique to optimize the co-detection of dopamine (DA) and serotonin (5-HT) in vitro and in vivo. We demonstrate that using optimized FSCV triangular waveform at scan rates ≤700 V s-1 and holding and switching at potentials of 0.4 and 1 V respectively, it is possible to discriminate voltage reduction and oxidation peaks of DA and 5-HT, with 5-HT contributing distinct multiple oxidation peaks. Taken together, our results present a compelling case for a carbon-based MEA platform rich with active functional groups that allows for repeatable and stable detection of electroactive multiple neurotransmitters at concentrations as low as 1.1 nM. This journal isen_US
dc.identifier.citationAnalyst. Vol.146, No.12 (2021), 3955-3970en_US
dc.identifier.doi10.1039/d1an00425een_US
dc.identifier.issn13645528en_US
dc.identifier.issn00032654en_US
dc.identifier.other2-s2.0-85107975202en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76138
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107975202&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.subjectEnvironmental Scienceen_US
dc.titleGlassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetryen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107975202&origin=inwarden_US

Files

Collections