Publication:
Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy

dc.contributor.authorMahdieh Poostchien_US
dc.contributor.authorIlker Ersoyen_US
dc.contributor.authorKatie McMenaminen_US
dc.contributor.authorEmile Gordonen_US
dc.contributor.authorNila Palaniappanen_US
dc.contributor.authorSusan Pierceen_US
dc.contributor.authorRichard J. Mauden_US
dc.contributor.authorAbhisheka Bansalen_US
dc.contributor.authorPrakash Srinivasanen_US
dc.contributor.authorLouis Milleren_US
dc.contributor.authorKannappan Palaniappanen_US
dc.contributor.authorGeorge Thomaen_US
dc.contributor.authorStefan Jaegeren_US
dc.contributor.otherHarvard School of Public Healthen_US
dc.contributor.otherJawaharlal Nehru Universityen_US
dc.contributor.otherNational Institute of Allergy and Infectious Diseasesen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherUniversity of Missouri-Kansas Cityen_US
dc.contributor.otherJohns Hopkins Bloomberg School of Public Healthen_US
dc.contributor.otherUniversity of Missouri-Columbiaen_US
dc.contributor.otherNational Library of Medicineen_US
dc.contributor.otherUniversity of Colorado at Boulderen_US
dc.date.accessioned2019-08-23T11:42:49Z
dc.date.available2019-08-23T11:42:49Z
dc.date.issued2018-10-01en_US
dc.description.abstract© 2018 SPIE. Despite the remarkable progress that has been made to reduce global malaria mortality by 29% in the past 5 years, malaria is still a serious global health problem. Inadequate diagnostics is one of the major obstacles in fighting the disease. An automated system for malaria diagnosis can help to make malaria screening faster and more reliable. We present an automated system to detect and segment red blood cells (RBCs) and identify infected cells in Wright-Giemsa stained thin blood smears. Specifically, using image analysis and machine learning techniques, we process digital images of thin blood smears to determine the parasitemia in each smear. We use a cell extraction method to segment RBCs, in particular overlapping cells. We show that a combination of RGB color and texture features outperforms other features. We evaluate our method on microscopic blood smear images from human and mouse and show that it outperforms other techniques. For human cells, we measure an absolute error of 1.18% between the true and the automatic parasite counts. For mouse cells, our automatic counts correlate well with expert and flow cytometry counts. This makes our system the first one to work for both human and mouse.en_US
dc.identifier.citationJournal of Medical Imaging. Vol.5, No.4 (2018)en_US
dc.identifier.doi10.1117/1.JMI.5.4.044506en_US
dc.identifier.issn23294310en_US
dc.identifier.issn23294302en_US
dc.identifier.other2-s2.0-85058824984en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/46309
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85058824984&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleMalaria parasite detection and cell counting for human and mouse using thin blood smear microscopyen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85058824984&origin=inwarden_US

Files

Collections