Publication:
Keyword extraction strategy for item banks text categorization

dc.contributor.authorAtorn Nuntiyagulen_US
dc.contributor.authorKanlaya Naruedomkulen_US
dc.contributor.authorNick Cerconeen_US
dc.contributor.authorDamras Wongsawangen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherDalhousie Universityen_US
dc.date.accessioned2018-08-24T01:48:18Z
dc.date.available2018-08-24T01:48:18Z
dc.date.issued2007-02-01en_US
dc.description.abstractWe proposed a feature selection approach, Patterned Keyword in Phrase (PKIP), to text categorization for item banks. The item bank is a collection of textual question items that are short sentences. Each sentence does not contain enough relevant words for directly categorizing by the traditional approaches such as "bag-of-words." Therefore, PKIP was designed to categorize such question item using only available keywords and their patterns. PKIP identifies the appropriate keywords by computing the weight of all words. In this paper, two keyword selection strategies are suggested to ensure the categorization accuracy of PKIP. PKIP was implemented and tested with the item bank of Thai high primary mathematics questions. The test results have proved that PKIP is able to categorize the question items correctly and the two keyword selection strategies can extract the very informative keywords. © 2007 Blackwell Publishing, Inc.en_US
dc.identifier.citationComputational Intelligence. Vol.23, No.1 (2007), 28-44en_US
dc.identifier.doi10.1111/j.1467-8640.2007.00293.xen_US
dc.identifier.issn14678640en_US
dc.identifier.issn08247935en_US
dc.identifier.other2-s2.0-34247627069en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/24404
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34247627069&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleKeyword extraction strategy for item banks text categorizationen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34247627069&origin=inwarden_US

Files

Collections