Publication:
Hide

dc.contributor.authorKannika Khompurngsonen_US
dc.contributor.authorCharles A. Micchellien_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity at Albany State University of New Yorken_US
dc.contributor.otherCity University of Hong Kongen_US
dc.date.accessioned2018-05-03T08:19:47Z
dc.date.available2018-05-03T08:19:47Z
dc.date.issued2011-10-31en_US
dc.description.abstractIn this paper we explore some aspects of the Hypercircle Inequality (Hi) in the context of kernel-based machine learning. We briefly describe Hi and its potential relevance to kernel- based learning when the data is known exactly and then extend it to circumstances where there is known data error (Hide). © 2011 Universidad de Jaén.en_US
dc.identifier.citationJaen Journal on Approximation. Vol.3, No.1 (2011), 87-115en_US
dc.identifier.issn19897251en_US
dc.identifier.issn18893066en_US
dc.identifier.other2-s2.0-81855217448en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/12135
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=81855217448&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleHideen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=81855217448&origin=inwarden_US

Files

Collections