Publication: Genomic islands from five strains of Burkholderia pseudomallei
Issued Date
2008-11-27
Resource Type
ISSN
14712164
Other identifier(s)
2-s2.0-58149313638
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
BMC Genomics. Vol.9, (2008)
Suggested Citation
Apichai Tuanyok, Benjamin R. Leadem, Raymond K. Auerbach, Stephen M. Beckstrom-Sternberg, James S. Beckstrom-Sternberg, Mark Mayo, Vanaporn Wuthiekanun, Thomas S. Brettin, William C. Nierman, Sharon J. Peacock, Bart J. Currie, David M. Wagner, Paul Keim Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics. Vol.9, (2008). doi:10.1186/1471-2164-9-566 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/18827
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Genomic islands from five strains of Burkholderia pseudomallei
Abstract
Background: Burkholderia pseudomallei is the etiologic agent of melioidosis, a significant cause of morbidity and mortality where this infection is endemic. Genomic differences among strains of B. pseudomallei are predicted to be one of the major causes of the diverse clinical manifestations observed among patients with melioidosis. The purpose of this study was to examine the role of genomic islands (GIs) as sources of genomic diversity in this species. Results: We found that genomic islands (GIs) vary greatly among B. pseudomallei strains. We identified 71 distinct GIs from the genome sequences of five reference strains of B. pseudomallei: K96243, 1710b, 1106a, MSHR668, and MSHR305. The genomic positions of these GIs are not random, as many of them are associated with tRNA gene loci. In particular, the 3′ end sequences of tRNA genes are predicted to be involved in the integration of GIs. We propose the term "tRNA-mediated site-specific recombination" (tRNA-SSR) for this mechanism. In addition, we provide a GI nomenclature that is based upon integration hotspots identified here or previously described. Conclusion: Our data suggest that acquisition of GIs is one of the major sources of genomic diversity within B. pseudomallei and the molecular mechanisms that facilitate horizontally-acquired GIs are common across multiple strains of B. pseudomallei. The differential presence of the 71 GIs across multiple strains demonstrates the importance of these mobile elements for shaping the genetic composition of individual strains and populations within this bacterial species. © 2008 Tuanyok et al; licensee BioMed Central Ltd.