Publication: Size-based characterization of polysaccharides by Taylor dispersion analysis with photochemical oxidation or backscattering interferometry detections
Issued Date
2019-06-25
Resource Type
ISSN
15205835
00249297
00249297
Other identifier(s)
2-s2.0-85068348821
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Macromolecules. Vol.52, No.12 (2019), 4421-4431
Suggested Citation
Laurent Leclercq, Phoonthawee Saetear, Agnès Rolland-Sabaté, Jean Philippe Biron, Joseph Chamieh, Luca Cipelletti, Darryl J. Bornhop, Hervé Cottet Size-based characterization of polysaccharides by Taylor dispersion analysis with photochemical oxidation or backscattering interferometry detections. Macromolecules. Vol.52, No.12 (2019), 4421-4431. doi:10.1021/acs.macromol.9b00605 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/50560
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Size-based characterization of polysaccharides by Taylor dispersion analysis with photochemical oxidation or backscattering interferometry detections
Abstract
Copyright © 2019 American Chemical Society. Taylor dispersion analysis (TDA) is a powerful sizing technique very well suited for (macro)molecules between angstroms and submicrons (typically up to 200 nm). However, new detection modes are required for non-UV-absorbing (macro)molecules such as most of the polysaccharides, including starches. In this work, two different detection modes were compared, backscattering interferometry (BSI) and UV-photooxidation detection (UV-POD). TDA-BSI measures the relative change of the refractive index between eluent and sample (water as eluent in this work), whereas TDA-UV-POD detects the UV-absorbing photo-oxidized products of polysaccharides/starches in strong alkaline media (130 mM NaOH or 1 M KOH). TDA-UV-POD detection was evaluated for linearity and sensitivity at two wavelengths, 214 and 266 nm. The mass-average hydrodynamic radius (Rh) obtained by TDA-BSI and TDA-UV-POD was found to be in excellent agreement, whereas higher average Rh values were obtained by batch dynamic light scattering (DLS) under the same conditions, because of the higher sensitivity of DLS to large-size solutes and aggregates. The hydrodynamic radius distributions obtained by TDA and DLS are intrinsically different but both techniques were found to be complementary, providing useful information on sample dispersity. Owing to the absence of the stationary phase, low sample consumption with straightforward sample preparation (no filtration), and no calibration, TDA is anticipated to become a method of choice for the size-based characterization of polysaccharides, including starches.