Publication:
Vehicle detection on a pint-sized computer

dc.contributor.authorThanida Tangkocharoenen_US
dc.contributor.authorAnanta Srisuphaben_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-21T07:21:19Z
dc.date.accessioned2019-03-14T08:03:25Z
dc.date.available2018-12-21T07:21:19Z
dc.date.available2019-03-14T08:03:25Z
dc.date.issued2017-03-23en_US
dc.description.abstract© 2017 IEEE. Powerful miniature single-board computers have recently gained attention, inviting computer scientists and engineers to develop various kinds of applications on these tiny devices. Having numerous benefits over full-scaled personal computers, their small size enables system mobility and allows operations under limited power resources. Exploring its computing capability, we set up a Raspberry Pi with a high-resolution camera. Its task is to detect vehicles based on image processing techniques. This is generally regarded as a computationally demanding process. Our system implements Haar-like features and a supervised cascade learning model. Empirical results are impressive, achieving good detection rate with an average sustained image rate of 2 Hz.en_US
dc.identifier.citation2017 9th International Conference on Knowledge and Smart Technology: Crunching Information of Everything, KST 2017. (2017), 40-44en_US
dc.identifier.doi10.1109/KST.2017.7886078en_US
dc.identifier.other2-s2.0-85017509156en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/42376
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85017509156&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleVehicle detection on a pint-sized computeren_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85017509156&origin=inwarden_US

Files

Collections