Publication:
Empirical bayes hierarchical modelling and mapping of HIV/AIDS

dc.contributor.authorApinya Surawiten_US
dc.contributor.authorChukiat Viwatwongkasemen_US
dc.contributor.authorPichitpong Soontornpipiten_US
dc.contributor.authorPrasong Kitidamrongsuken_US
dc.contributor.authorPiangchan Rojanaviparten_US
dc.contributor.authorSiam Sae-Tangen_US
dc.contributor.otherVajira Hospitalen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherBangkokthonburi Universityen_US
dc.date.accessioned2020-01-27T08:32:48Z
dc.date.available2020-01-27T08:32:48Z
dc.date.issued2019-03-01en_US
dc.description.abstract© 2019 IEEE. Disease mapping of incidence and/or prevalence in epidemiology by statistical modeling play an important role in pointing out the spatial risks on a map and describing the causal relationship between outcomes and the potential risk factors. Major problem of public health in Thailand is HIV/AIDS infection. Empirical Bayes method of hierarchical data was aimed to fit the data an HIV/AIDS mapping and to cope with the incidence model of risk factors by using HIV/AIDS infection data of new diagnosis in Thailand 2013 to 2017 from the National AIDS Program (NAP), collected by the National Health Security Office (NHSO). Under the previously empirical data, prior estimation is fitted well with goodness-of-fit values of the Kolmogorov-Smirnov (KS) test. Empirical Bayes Poisson hierarchical approach performs well in both HIV/AIDS mapping and modeling of incidence among risk factors, such as gender and age group. The best-fitted model was the interaction effects and found that in 2015, 2016 and 2017, HIV/AIDS infection rate is high risk at male aged 24-49 years. The top seven provinces with the highest risk (infection rate > 7.125%) were Nakhon Nayok, Samut Prakarn, Chumphon, Pathumthani, Singburi, Phuket, and Buri Ram, respectively.en_US
dc.identifier.citationiEECON 2019 - 7th International Electrical Engineering Congress, Proceedings. (2019)en_US
dc.identifier.doi10.1109/iEECON45304.2019.8938851en_US
dc.identifier.other2-s2.0-85077964521en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50811
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077964521&origin=inwarden_US
dc.subjectEnergyen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleEmpirical bayes hierarchical modelling and mapping of HIV/AIDSen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077964521&origin=inwarden_US

Files

Collections