Publication:
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle

dc.contributor.authorF. Aharonianen_US
dc.contributor.authorQ. Anen_US
dc.contributor.authorAxikeguen_US
dc.contributor.authorL. X. Baien_US
dc.contributor.authorY. X. Baien_US
dc.contributor.authorY. W. Baoen_US
dc.contributor.authorD. Bastierien_US
dc.contributor.authorX. J. Bien_US
dc.contributor.authorY. J. Bien_US
dc.contributor.authorH. Caien_US
dc.contributor.authorJ. T. Caien_US
dc.contributor.authorZ. Caoen_US
dc.contributor.authorJ. Changen_US
dc.contributor.authorJ. F. Changen_US
dc.contributor.authorX. C. Changen_US
dc.contributor.authorB. M. Chenen_US
dc.contributor.authorJ. Chenen_US
dc.contributor.authorL. Chenen_US
dc.contributor.authorM. J. Chenen_US
dc.contributor.authorM. L. Chenen_US
dc.contributor.authorQ. H. Chenen_US
dc.contributor.authorS. H. Chenen_US
dc.contributor.authorS. Z. Chenen_US
dc.contributor.authorT. L. Chenen_US
dc.contributor.authorX. L. Chenen_US
dc.contributor.authorY. Chenen_US
dc.contributor.authorN. Chengen_US
dc.contributor.authorY. D. Chengen_US
dc.contributor.authorS. W. Cuien_US
dc.contributor.authorX. H. Cuien_US
dc.contributor.authorY. D. Cuien_US
dc.contributor.authorB. Z. Daien_US
dc.contributor.authorH. L. Daien_US
dc.contributor.authorZ. G. Daien_US
dc.contributor.authorDanzengluobuen_US
dc.contributor.authorD. della Volpeen_US
dc.contributor.authorB. D'Ettorre Piazzolien_US
dc.contributor.authorX. J. Dongen_US
dc.contributor.authorJ. H. Fanen_US
dc.contributor.authorY. Z. Fanen_US
dc.contributor.authorZ. X. Fanen_US
dc.contributor.authorJ. Fangen_US
dc.contributor.authorK. Fangen_US
dc.contributor.authorC. F. Fengen_US
dc.contributor.authorL. Fengen_US
dc.contributor.authorS. H. Fengen_US
dc.contributor.authorY. L. Fengen_US
dc.contributor.authorB. Gaoen_US
dc.contributor.authorC. D. Gaoen_US
dc.contributor.authorQ. Gaoen_US
dc.contributor.authorW. Gaoen_US
dc.contributor.authorM. M. Geen_US
dc.contributor.authorL. S. Gengen_US
dc.contributor.authorG. H. Gongen_US
dc.contributor.authorQ. B. Gouen_US
dc.contributor.authorM. H. Guen_US
dc.contributor.authorJ. G. Guoen_US
dc.contributor.authorX. L. Guoen_US
dc.contributor.authorY. Q. Guoen_US
dc.contributor.authorY. Y. Guoen_US
dc.contributor.authorY. A. Hanen_US
dc.contributor.authorH. H. Heen_US
dc.contributor.authorH. N. Heen_US
dc.contributor.authorJ. C. Heen_US
dc.contributor.authorS. L. Heen_US
dc.contributor.authorX. B. Heen_US
dc.contributor.authorY. Heen_US
dc.contributor.authorM. Helleren_US
dc.contributor.authorY. K. Horen_US
dc.contributor.authorC. Houen_US
dc.contributor.authorX. Houen_US
dc.contributor.authorH. B. Huen_US
dc.contributor.authorS. Huen_US
dc.contributor.authorS. C. Huen_US
dc.contributor.authorX. J. Huen_US
dc.contributor.authorD. H. Huangen_US
dc.contributor.authorQ. L. Huangen_US
dc.contributor.authorW. H. Huangen_US
dc.contributor.authorX. T. Huangen_US
dc.contributor.authorZ. C. Huangen_US
dc.contributor.authorF. Jien_US
dc.contributor.authorX. L. Jien_US
dc.contributor.authorH. Y. Jiaen_US
dc.contributor.authorK. Jiangen_US
dc.contributor.authorZ. J. Jiangen_US
dc.contributor.authorC. Jinen_US
dc.contributor.authorD. Kuleshoven_US
dc.contributor.authorK. Levochkinen_US
dc.contributor.authorB. B. Lien_US
dc.contributor.authorC. Lien_US
dc.contributor.authorF. Lien_US
dc.contributor.authorH. B. Lien_US
dc.contributor.authorH. C. Lien_US
dc.contributor.authorH. Y. Lien_US
dc.contributor.authorJ. Lien_US
dc.contributor.authorK. Lien_US
dc.contributor.authorW. L. Lien_US
dc.contributor.authorX. Lien_US
dc.contributor.authorX. R. Lien_US
dc.contributor.authorY. Lien_US
dc.contributor.otherState Key Laboratory of Particle Detection & Electronicsen_US
dc.contributor.otherNanjing Universityen_US
dc.contributor.otherShanghai Astronomical Observatory Chinese Academy of Sciencesen_US
dc.contributor.otherInstitute for Nuclear Research of the Russian Academy of Sciencesen_US
dc.contributor.otherShandong Universityen_US
dc.contributor.otherWuhan Universityen_US
dc.contributor.otherYunnan Universityen_US
dc.contributor.otherInstitute of High Energy Physics Chinese Academy of Scienceen_US
dc.contributor.otherUniversity of Chinese Academy of Sciencesen_US
dc.contributor.otherGuangzhou Universityen_US
dc.contributor.otherTsinghua Universityen_US
dc.contributor.otherSun Yat-Sen Universityen_US
dc.contributor.otherUniversity of Science and Technology of Chinaen_US
dc.contributor.otherZhengzhou Universityen_US
dc.contributor.otherDublin Institute for Advanced Studiesen_US
dc.contributor.otherUniversità degli Studi di Napoli Federico IIen_US
dc.contributor.otherSichuan Universityen_US
dc.contributor.otherNational Astronomical Observatories Chinese Academy of Sciencesen_US
dc.contributor.otherMax-Planck-Institut für Kernphysiken_US
dc.contributor.otherSouthwest Jiaotong Universityen_US
dc.contributor.otherPurple Mountain Observatory Chinese Academy of Sciencesen_US
dc.contributor.otherUniversité de Genèveen_US
dc.contributor.otherHebei Normal Universityen_US
dc.contributor.otherTibet Universityen_US
dc.contributor.otherTIANFU Cosmic Ray Research Centeren_US
dc.date.accessioned2022-08-04T11:26:26Z
dc.date.available2022-08-04T11:26:26Z
dc.date.issued2021-08-01en_US
dc.description.abstractThe first Water Cherenkov detector of the LHAASO experiment (WCDA-1) has been operating since April 2019. The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle. The WCDA-1 achieves a sensitivity of 65 mCU per year, with a statistical threshold of 5 σ. To accomplish this, a 97.7% cosmic-ray background rejection rate around 1 TeV and 99.8% around 6 TeV with an approximate photon acceptance of 50% is achieved after applying an algorithm to separate gamma-induced showers. The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45° at 1 TeV and better than 0.2° above 6 TeV, with a pointing accuracy better than 0.05°. These values all match the design specifications. The energy resolution is found to be 33% for gamma rays around 6 TeV. The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.en_US
dc.identifier.citationChinese Physics C. Vol.45, No.8 (2021)en_US
dc.identifier.doi10.1088/1674-1137/ac041ben_US
dc.identifier.issn16741137en_US
dc.identifier.other2-s2.0-85112147946en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/78994
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112147946&origin=inwarden_US
dc.subjectPhysics and Astronomyen_US
dc.titlePerformance of LHAASO-WCDA and observation of the Crab Nebula as a standard candleen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112147946&origin=inwarden_US

Files

Collections