Publication: Strain-Transcending Inhibitory Antibodies against Homologous and Heterologous Strains of Duffy Binding Protein region II
Issued Date
2016-01-01
Resource Type
ISSN
19326203
Other identifier(s)
2-s2.0-85024376165
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
PloS one. Vol.11, No.5 (2016), e0154577
Suggested Citation
Sudarat Wongkidakarn, Amy M. McHenry, Jetsumon Sattabongkot, John H. Adams, Patchanee Chootong Strain-Transcending Inhibitory Antibodies against Homologous and Heterologous Strains of Duffy Binding Protein region II. PloS one. Vol.11, No.5 (2016), e0154577. doi:10.1371/journal.pone.0154577 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/42181
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Strain-Transcending Inhibitory Antibodies against Homologous and Heterologous Strains of Duffy Binding Protein region II
Other Contributor(s)
Abstract
Duffy binding protein region II (DBPII) is a promising vaccine candidate against vivax malaria. However, polymorphisms of DBPII are the major obstacle to designing a successful vaccine. Here, we examined whether anti-DBPII antibodies from individual P. vivax exposures provide strain-transcending immunity and whether their presence is associated with DBPII haplotypes found in patients with acute P. vivax. The ability of antibodies to inhibit DBL-TH-erythrocyte binding was tested by COS7 erythrocyte binding inhibition assay. Seven samples of high responders (HR) were identified from screening anti-DBPII levels. HR no.3 and HR no.6 highly inhibited all DBL-TH binding to erythrocytes, by >80%. Antibodies from these two patients' plasma had the potential to be broadly inhibitory against DBL-TH1, -TH2, -TH6, -TH7, -TH8 and -TH9 haplotypes when plasma was serially diluted from 1:500 to 1:2000. To further examine the association of DBPII haplotypes and the ability of antibodies to broadly inhibit DBL-TH variants, the individual samples underwent sequencing analysis and the inhibitory function of the anti-DBPII antibodies was tested. The patterns of DBPII polymorphisms in acute patients were classified into two groups, DBPII Sal I (55%) and DBL-TH variants (45%). Plasma from Sal I and DBPII-TH patients who had the highest inhibition against Sal I or DBL-TH4 and -TH5 was serially diluted from 1:500 to 1:2000 and their inhibitory capacity was tested against a panel of DBL-TH haplotypes. Results provided evidence of both strain-transcending inhibition as well as strain-specific inhibition by antibodies that blocked erythrocyte binding against some DBL-TH variants and against homologous alleles. This study demonstrated broad inhibition by anti-DBPII antibodies against DBL-TH haplotypes in natural P. vivax exposed individuals. The identification of conserved epitopes among DBL-TH may have implications for vaccine development of a DBPII-based vaccine against diverse P. vivax infections.