Publication:
SIS-SEIQR adaptive network model for pandemic influenza

dc.contributor.authorWannika Jumpenen_US
dc.contributor.authorSomsak Orankitjaroenen_US
dc.contributor.authorPichit Boonkrongen_US
dc.contributor.authorBoonmee Wattananonen_US
dc.contributor.authorBenchawan Wiwatanapatapheeen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.date.accessioned2018-05-03T08:08:52Z
dc.date.available2018-05-03T08:08:52Z
dc.date.issued2011-09-29en_US
dc.description.abstractThis paper aims to present an SIS-SEIQR network model for pandemic influenza. We propose a network algorithm to generate an adaptive social network with dynamic hub nodes to capture the disease transmission in a human community. Effects of visiting probability on the spread of the disease are investigated. The results indicate that high visiting probability increases the transmission rate of the disease.en_US
dc.identifier.citationProceedings of the European Computing Conference, ECC '11. (2011), 147-151en_US
dc.identifier.other2-s2.0-79960106726en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/11771
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960106726&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleSIS-SEIQR adaptive network model for pandemic influenzaen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960106726&origin=inwarden_US

Files

Collections