Publication:
Intracellular Redox Perturbation in Saccharomyces cerevisiae Improved Furfural Tolerance and Enhanced Cellulosic Bioethanol Production

dc.contributor.authorChen Guang Liuen_US
dc.contributor.authorKai Lien_US
dc.contributor.authorKe Yi Lien_US
dc.contributor.authorChularat Sakdaronnarongen_US
dc.contributor.authorMuhammad Aamer Mehmooden_US
dc.contributor.authorXin Qing Zhaoen_US
dc.contributor.authorFeng Wu Baien_US
dc.contributor.otherGovernment College University Faisalabaden_US
dc.contributor.otherShanghai Jiao Tong Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-08-25T09:04:23Z
dc.date.available2020-08-25T09:04:23Z
dc.date.issued2020-06-23en_US
dc.description.abstract© Copyright © 2020 Liu, Li, Li, Sakdaronnarong, Mehmood, Zhao and Bai. Furfural is a major toxic byproduct found in the hydrolysate of lignocellulosic biomass, which adversely interferes with the growth and ethanol fermentation of Saccharomyces cerevisiae. The current study was focused on the impact of cofactor availability derived intracellular redox perturbation on furfural tolerance. Here, three strategies were employed in cofactor conversion in S. cerevisiae: (1) heterologous expression of NADH dehydrogenase (NDH) from E. coli which catalyzed the NADH to NAD+ and increased the cellular sensitivity to furfural, (2) overexpression of GLR1, OYE2, ZWF1, and IDP1 genes responsible for the interconversion of NADPH and NADP+, which enhanced the furfural tolerance, (3) expression of NAD(P)+ transhydrogenase (PNTB) and NAD+ kinase (POS5) which showed a little impact on furfural tolerance. Besides, a substantial redistribution of metabolic fluxes was also observed with the expression of cofactor-related genes. These results indicated that NADPH-based intracellular redox perturbation plays a key role in furfural tolerance, which suggested single-gene manipulation as an effective strategy for enhancing tolerance and subsequently achieving higher ethanol titer using lignocellulosic hydrolysate.en_US
dc.identifier.citationFrontiers in Bioengineering and Biotechnology. Vol.8, (2020)en_US
dc.identifier.doi10.3389/fbioe.2020.00615en_US
dc.identifier.issn22964185en_US
dc.identifier.other2-s2.0-85087519319en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/57713
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087519319&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemical Engineeringen_US
dc.subjectEngineeringen_US
dc.subjectMedicineen_US
dc.titleIntracellular Redox Perturbation in Saccharomyces cerevisiae Improved Furfural Tolerance and Enhanced Cellulosic Bioethanol Productionen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087519319&origin=inwarden_US

Files

Collections