Publication:
Semantic segmentation of artery-venous retinal vessel using simple convolutional neural network

dc.contributor.authorW. Setiawanen_US
dc.contributor.authorM. I. Utoyoen_US
dc.contributor.authorR. Rulaningtyasen_US
dc.contributor.authorA. Wicaksonoen_US
dc.contributor.otherUniversitas Trunojoyo Maduraen_US
dc.contributor.otherUniversitas Airlanggaen_US
dc.contributor.otherFaculty of Medicine, Ramathibodi Hospital, Mahidol Universityen_US
dc.date.accessioned2020-01-27T08:29:19Z
dc.date.available2020-01-27T08:29:19Z
dc.date.issued2019-04-09en_US
dc.description.abstract© 2019 Published under licence by IOP Publishing Ltd. Semantic segmentation is how to categorize objects in an image based on pixel color intensity. There is an implementation in the medical imaging. This article discusses semantic segmentation in retinal blood vessels. Retinal blood vessels consist of artery and vein. Arteryvenous segmentation is needed to detect diabetic retinopathy, hypertension, and artherosclerosis. The data for the experiment is Retinal Image vessel Tree Extraction (RITE). Data consists of 20 patches with a dimension of 128 × 128 × 3. The process for performing semantic segmentation consists of 3 method, create a Conventional Neural Network (CNN) model, pre-trained network, and training the network. The CNN model consists of 10 layers, 1 input layer image, 3 convolution layers, 2 Rectified Linear Units (ReLU), 1 Max pooling, 1 transposed convolution layer, 1 softmax and 1 pixel classification layer. The pre-trained network uses the optimization algorithm Stochastic Gradient Descent with Momentum (SGDM), Root Mean Square Propagation (RMSProp) and Adaptive Moment optimization (Adam). Various scenarios were tested to get optimal accuracy. The learning rate is 1e-3 and 1e-2. Minibatch size are 4,8,16,32,64, and 128. The maximum value of epoch is set to 100. The results show the highest accuracy of up to 98.35%en_US
dc.identifier.citationIOP Conference Series: Earth and Environmental Science. Vol.243, No.1 (2019)en_US
dc.identifier.doi10.1088/1755-1315/243/1/012021en_US
dc.identifier.issn17551315en_US
dc.identifier.issn17551307en_US
dc.identifier.other2-s2.0-85064865010en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50760
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064865010&origin=inwarden_US
dc.subjectEarth and Planetary Sciencesen_US
dc.subjectEnvironmental Scienceen_US
dc.titleSemantic segmentation of artery-venous retinal vessel using simple convolutional neural networken_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064865010&origin=inwarden_US

Files

Collections