Publication:
Finite-Time Passivity-Based Stability Criteria for Delayed Discrete-Time Neural Networks via New Weighted Summation Inequalities

dc.contributor.authorRamasamy Saravanakumaren_US
dc.contributor.authorSreten B. Stojanovicen_US
dc.contributor.authorDamnjan D. Radosavljevicen_US
dc.contributor.authorChoon Ki Ahnen_US
dc.contributor.authorHamid Reza Karimien_US
dc.contributor.otherUniversity of Nišen_US
dc.contributor.otherUniversiteti i Prishtinesen_US
dc.contributor.otherPolitecnico di Milanoen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherKunsan National Universityen_US
dc.contributor.otherKorea Universityen_US
dc.date.accessioned2020-01-27T08:24:27Z
dc.date.available2020-01-27T08:24:27Z
dc.date.issued2019-01-01en_US
dc.description.abstract© 2012 IEEE. In this paper, we study the problem of finite-time stability and passivity criteria for discrete-time neural networks (DNNs) with variable delays. The main objective is how to effectively evaluate the finite-time passivity conditions for NNs. To achieve this, some new weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of a novel Lyapunov-Krasovskii functional, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the proposed results.en_US
dc.identifier.citationIEEE Transactions on Neural Networks and Learning Systems. Vol.30, No.1 (2019), 58-71en_US
dc.identifier.doi10.1109/TNNLS.2018.2829149en_US
dc.identifier.issn21622388en_US
dc.identifier.issn2162237Xen_US
dc.identifier.other2-s2.0-85047638906en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50695
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047638906&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleFinite-Time Passivity-Based Stability Criteria for Delayed Discrete-Time Neural Networks via New Weighted Summation Inequalitiesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047638906&origin=inwarden_US

Files

Collections