Publication:
CNN-based image analysis for malaria diagnosis

dc.contributor.authorZhaohui Liangen_US
dc.contributor.authorAndrew Powellen_US
dc.contributor.authorIlker Ersoyen_US
dc.contributor.authorMahdieh Poostchien_US
dc.contributor.authorKamolrat Silamuten_US
dc.contributor.authorKannappan Palaniappanen_US
dc.contributor.authorPeng Guoen_US
dc.contributor.authorMd Amir Hossainen_US
dc.contributor.authorAntani Sameeren_US
dc.contributor.authorRichard James Maudeen_US
dc.contributor.authorJimmy Xiangji Huangen_US
dc.contributor.authorStefan Jaegeren_US
dc.contributor.authorGeorge Thomaen_US
dc.contributor.otherYork Universityen_US
dc.contributor.otherSwarthmore Collegeen_US
dc.contributor.otherUniversity of Missouri School of Medicineen_US
dc.contributor.otherUniversity of Missouri-Columbiaen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherElectrical and Computer Engineeringen_US
dc.contributor.otherChittagong Medical College Hospitalen_US
dc.contributor.otherNational Library of Medicineen_US
dc.date.accessioned2018-12-21T06:56:21Z
dc.date.accessioned2019-03-14T08:03:01Z
dc.date.available2018-12-21T06:56:21Z
dc.date.available2019-03-14T08:03:01Z
dc.date.issued2017-01-17en_US
dc.description.abstract© 2016 IEEE. Malaria is a major global health threat. The standard way of diagnosing malaria is by visually examining blood smears for parasite-infected red blood cells under the microscope by qualified technicians. This method is inefficient and the diagnosis depends on the experience and the knowledge of the person doing the examination. Automatic image recognition technologies based on machine learning have been applied to malaria blood smears for diagnosis before. However, the practical performance has not been sufficient so far. This study proposes a new and robust machine learning model based on a convolutional neural network (CNN) to automatically classify single cells in thin blood smears on standard microscope slides as either infected or uninfected. In a ten-fold cross-validation based on 27,578 single cell images, the average accuracy of our new 16-layer CNN model is 97.37%. A transfer learning model only achieves 91.99% on the same images. The CNN model shows superiority over the transfer learning model in all performance indicators such as sensitivity (96.99% vs 89.00%), specificity (97.75% vs 94.98%), precision (97.73% vs 95.12%), F1 score (97.36% vs 90.24%), and Matthews correlation coefficient (94.75% vs 85.25%).en_US
dc.identifier.citationProceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016. (2017), 493-496en_US
dc.identifier.doi10.1109/BIBM.2016.7822567en_US
dc.identifier.other2-s2.0-85013270066en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/41984
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013270066&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleCNN-based image analysis for malaria diagnosisen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013270066&origin=inwarden_US

Files

Collections