Publication: Artemisinin-resistant Plasmodium falciparum malaria
Issued Date
2016-01-01
Resource Type
ISSN
21650497
Other identifier(s)
2-s2.0-85011275750
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Microbiology Spectrum. Vol.4, No.3 (2016)
Suggested Citation
Rick M. Fairhurst, Arjen M. Dondorp Artemisinin-resistant Plasmodium falciparum malaria. Microbiology Spectrum. Vol.4, No.3 (2016). doi:10.1128/microbiolspec.EI10-0013-2016 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/43284
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Artemisinin-resistant Plasmodium falciparum malaria
Author(s)
Abstract
© 2016 American Society for Microbiology. For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.