Publication:
Visible-light-driven WO<inf>3</inf>/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight

dc.contributor.authorAmornrat Khampuanbuten_US
dc.contributor.authorSarunya Santalelaten_US
dc.contributor.authorApirak Pankiewen_US
dc.contributor.authorDuangdao Channeien_US
dc.contributor.authorSoraya Pornsuwanen_US
dc.contributor.authorKajornsak Faungnawakijen_US
dc.contributor.authorSukon Phanichphanten_US
dc.contributor.authorBurapat Inceesungvornen_US
dc.contributor.otherNaresuan Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherThailand National Electronics and Computer Technology Centeren_US
dc.contributor.otherThailand National Science and Technology Development Agencyen_US
dc.contributor.otherChiang Mai Universityen_US
dc.date.accessioned2020-01-27T03:31:10Z
dc.date.available2020-01-27T03:31:10Z
dc.date.issued2020-02-15en_US
dc.description.abstract© 2019 Elsevier Inc. The visible-light-driven WO3/BiOBr heterojunction was for the first time determined for its photocatalytic activity toward oxidative coupling of amines at room temperature using molecular oxygen as a green oxidant. The WO3/BiOBr heterojunction exhibits superior photocatalytic activity and photostability compared with pure BiOBr and WO3 due to an increased oxygen vacancy concentration, an effective separation of photogenerated electron-hole pairs and an efficient interfacial charge transfer. Additionally, the WO3/BiOBr also shows 2.3 and 41.1 times higher activity than that of TiO2 P25 and BiVO4 Alfa Aesar, respectively. Determination of energy band line-up indicates that the WO3/BiOBr is a type II-heterojunction where electron-hole pairs are efficiently separated. Mechanistic studies based on radical quenching experiment, EPR trapping study and Hammett plot reveal that the main reaction pathway is the electron transfer route mediated by superoxide radical. A possible surface reaction mechanism, the insightful information on the structure-activity relationship and the involvement of reactive oxygen species elucidated in this work lay an important background for the material design and encourage a further development of highly efficient photocatalysts toward organic fine chemical syntheses.en_US
dc.identifier.citationJournal of Colloid and Interface Science. Vol.560, (2020), 213-224en_US
dc.identifier.doi10.1016/j.jcis.2019.10.057en_US
dc.identifier.issn10957103en_US
dc.identifier.issn00219797en_US
dc.identifier.other2-s2.0-85073726503en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/49570
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073726503&origin=inwarden_US
dc.subjectChemical Engineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleVisible-light-driven WO<inf>3</inf>/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insighten_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073726503&origin=inwarden_US

Files

Collections