Publication: Mechanical characteristics of hydrogenated natural rubber vulcanizates
Issued Date
2008-12-31
Resource Type
ISSN
10991581
10427147
10427147
DOI
Other identifier(s)
2-s2.0-58049116716
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Polymers for Advanced Technologies. Vol.19, No.11 (2008), 1608-1615
Suggested Citation
Yuko Ikeda, Pranee Phinyocheep, Sumet Kittipoom, Jareerat Ruancharoen, Yota Kokubo, Yuichi Morita, Kensuke Hijikata, Shinzo Kohjiya Mechanical characteristics of hydrogenated natural rubber vulcanizates. Polymers for Advanced Technologies. Vol.19, No.11 (2008), 1608-1615. doi:10.1002/pat.1176 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/19391
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Mechanical characteristics of hydrogenated natural rubber vulcanizates
Abstract
Mechanical properties of partially hydrogenated natural rubber (HNR) vulcanizates were evaluated regarding their chemical structure and crystallizable nature of HNR, and are reported here, to the best of our knowledge, for the first time. HNRs of three levels of hydrogenation (20.6, 29.0, and 40.6 mol%) were successfully prepared by the chemical modification of natural rubber (NR) latex using N2H4 and H2O2 as reagents, in a sufficient amount for preparing sulfur-crosslinked samples to be subjected to mechanical and structural measurements. The three HNR vulcanizates were found to be crystallizable upon stretching; it is noted that even 40.6 mol% hydrogenation did not prevent HNR vulcanizates from crystallization upon stretching, while their onset strain of crystallization was higher than that of NR vulcanizate. The hysteresis loss and residual strain up to a stretching ratio of 2 for the HNR vulcanizates tended to become larger with the increase in the degree of the hydrogenation. Tensile and dynamic mechanical properties of 20.6 mol% hydrogenated HNR vulcanizate were comparable to those of NR vulcanizate. From differential scanning calorimetry and temperature dispersion of dynamic modulus or loss, the glass transition temperatures of HNR vulcanizates were found to be almost the same as that of NR vulcanizate, which is also notable. The thermal stability of HNR vulcanizates was better than that of NR vulcanizate. Thus, this chemical modification seems to give a promising NR derivative whose properties can be equivalent or even better than the mother polymer. Copyright © 2008 John Wiley & Sons, Ltd.