Publication: The asymptotics of global solutions for semilinear wave equations in two space dimensions
dc.contributor.author | S. Y. Lai | en_US |
dc.contributor.author | B. Wiwatanapataphe | en_US |
dc.contributor.other | Southwest University of Finance and EcoNomics | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2018-05-03T08:19:51Z | |
dc.date.available | 2018-05-03T08:19:51Z | |
dc.date.issued | 2011-10-19 | en_US |
dc.description.abstract | The objective of this paper is to establish an asymptotic theory of global solutions for a class of semilinear wave equations in two space dimensions. The validity of formal approximations for time t → ∞ is discussed in the classical sense of C 2 , and it is found that the global solution decays like (1 + t + |x|) -k (0 < k < 1/2).. Copyright © 2011 Watam Press. | en_US |
dc.identifier.citation | Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms. Vol.18, No.5 (2011), 647-657 | en_US |
dc.identifier.issn | 14928760 | en_US |
dc.identifier.other | 2-s2.0-80054069563 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/12136 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80054069563&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | The asymptotics of global solutions for semilinear wave equations in two space dimensions | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80054069563&origin=inward | en_US |