Publication:
A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis

dc.contributor.authorShelton W. Wrighten_US
dc.contributor.authorTaniya Kaewarpaien_US
dc.contributor.authorLara Lovelace-Maconen_US
dc.contributor.authorDeirdre Duckenen_US
dc.contributor.authorViriya Hantrakunen_US
dc.contributor.authorKristina E. Rudden_US
dc.contributor.authorPrapit Teparrukkulen_US
dc.contributor.authorRungnapa Phunpangen_US
dc.contributor.authorPeeraya Ekchariyawaten_US
dc.contributor.authorAdul Dulsuken_US
dc.contributor.authorBoonhthanom Moonmueangsanen_US
dc.contributor.authorChumpol Morakoten_US
dc.contributor.authorEkkachai Thiansukhonen_US
dc.contributor.authorDirek Limmathurotsakulen_US
dc.contributor.authorNarisara Chantratitaen_US
dc.contributor.authorT. Eoin Westen_US
dc.contributor.otherFaculty of Tropical Medicine, Mahidol Universityen_US
dc.contributor.otherUdon Thani Center Hospitalen_US
dc.contributor.otherUniversity of Washington School of Medicineen_US
dc.contributor.otherUniversity of Washingtonen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity of Pittsburgh School of Medicineen_US
dc.contributor.otherSunpasitthiprasong Hospitalen_US
dc.contributor.otherMukdahan Hospitalen_US
dc.date.accessioned2022-08-04T10:59:37Z
dc.date.available2022-08-04T10:59:37Z
dc.date.issued2021-03-01en_US
dc.description.abstractBackground: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. Methods: In a derivation set (N=113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-E', granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N=78) and in a prospectively enrolled external validation set (N=161) of hospitalized adults with melioidosis. Results: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79-.92) vs 0.78 (.69-.87); P=.01]. In both the internal validation set (0.91 [0.84-0.97]) and the external validation set (0.81 [0.74-0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. Conclusions: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis.en_US
dc.identifier.citationClinical Infectious Diseases. Vol.72, No.5 (2021), 821-828en_US
dc.identifier.doi10.1093/cid/ciaa126en_US
dc.identifier.issn15376591en_US
dc.identifier.issn10584838en_US
dc.identifier.other2-s2.0-85099684761en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/78409
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099684761&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleA 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosisen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099684761&origin=inwarden_US

Files

Collections