Publication:
Multiquadric spline-based interactive segmentation of vascular networks

dc.contributor.authorSachin Meenaen_US
dc.contributor.authorV. B.Surya Prasathen_US
dc.contributor.authorYasmin M. Kassimen_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorOlga V. Glinskiien_US
dc.contributor.authorVladislav V. Glinskyen_US
dc.contributor.authorVirginia H. Huxleyen_US
dc.contributor.authorKannappan Palaniappanen_US
dc.contributor.otherComputational Imaging and VisAnalysis Laben_US
dc.contributor.otherVA Medical Centeren_US
dc.contributor.otherDepartment of Medical Pharmacology and Physiologyen_US
dc.contributor.otherUniversity of Missouri-Columbiaen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherHarvard School of Public Healthen_US
dc.date.accessioned2018-12-11T02:37:34Z
dc.date.accessioned2019-03-14T08:04:30Z
dc.date.available2018-12-11T02:37:34Z
dc.date.available2019-03-14T08:04:30Z
dc.date.issued2016-10-13en_US
dc.description.abstract© 2016 IEEE. Commonly used drawing tools for interactive image segmentation and labeling include active contours or boundaries, scribbles, rectangles and other shapes. Thin vessel shapes in images of vascular networks are difficult to segment using automatic or interactive methods. This paper introduces the novel use of a sparse set of user-defined seed points (supervised labels) for precisely, quickly and robustly segmenting complex biomedical images. A multiquadric spline-based binary classifier is proposed as a unique approach for interactive segmentation using as features color values and the location of seed points. Epifluorescence imagery of the dura mater microvasculature are difficult to segment for quantitative applications due to challenging tissue preparation, imaging conditions, and thin, faint structures. Experimental results based on twenty epifluorescence images is used to illustrate the benefits of using a set of seed points to obtain fast and accurate interactive segmentation compared to four interactive and automatic segmentation approaches.en_US
dc.identifier.citationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Vol.2016-October, (2016), 5913-5916en_US
dc.identifier.doi10.1109/EMBC.2016.7592074en_US
dc.identifier.issn1557170Xen_US
dc.identifier.other2-s2.0-85009083480en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43431
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009083480&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMedicineen_US
dc.titleMultiquadric spline-based interactive segmentation of vascular networksen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009083480&origin=inwarden_US

Files

Collections