Publication: On strongly semiprime modules and submodules
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Nguyen Trong Bac | en_US |
dc.contributor.author | Nico Johannes Groenewald | en_US |
dc.contributor.author | Dong Thi Hong Ngoc | en_US |
dc.contributor.other | Ton-Duc-Thang University | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Nguyen Tat Thanh University | en_US |
dc.contributor.other | Nelson Mandela University | en_US |
dc.contributor.other | Thai Nguyen University of Economics and Business Administration | en_US |
dc.date.accessioned | 2019-08-23T11:29:39Z | |
dc.date.available | 2019-08-23T11:29:39Z | |
dc.date.issued | 2018-12-01 | en_US |
dc.description.abstract | © 2018 by the Mathematical Association of Thailand. All rights reserved. We provide the notion of strongly semiprime submodules of a given right R-module M and describe properties of them as a generalization of completely semiprime ideals in associative rings. We show that a proper fully invariant submodule of M is strongly prime if and only if it is prime and strongly semiprime. | en_US |
dc.identifier.citation | Thai Journal of Mathematics. Vol.16, No.3 (2018), 577-590 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85059454828 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/46093 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059454828&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | On strongly semiprime modules and submodules | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059454828&origin=inward | en_US |