Publication:
On strongly semiprime modules and submodules

dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorNguyen Trong Bacen_US
dc.contributor.authorNico Johannes Groenewalden_US
dc.contributor.authorDong Thi Hong Ngocen_US
dc.contributor.otherTon-Duc-Thang Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNguyen Tat Thanh Universityen_US
dc.contributor.otherNelson Mandela Universityen_US
dc.contributor.otherThai Nguyen University of Economics and Business Administrationen_US
dc.date.accessioned2019-08-23T11:29:39Z
dc.date.available2019-08-23T11:29:39Z
dc.date.issued2018-12-01en_US
dc.description.abstract© 2018 by the Mathematical Association of Thailand. All rights reserved. We provide the notion of strongly semiprime submodules of a given right R-module M and describe properties of them as a generalization of completely semiprime ideals in associative rings. We show that a proper fully invariant submodule of M is strongly prime if and only if it is prime and strongly semiprime.en_US
dc.identifier.citationThai Journal of Mathematics. Vol.16, No.3 (2018), 577-590en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85059454828en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/46093
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059454828&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleOn strongly semiprime modules and submodulesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059454828&origin=inwarden_US

Files

Collections