Publication:
Can segmental model reductions quantify whole-body balance accurately during dynamic activities?

dc.contributor.authorParunchaya Jamkrajangen_US
dc.contributor.authorMark A. Robinsonen_US
dc.contributor.authorWeerawat Limroongreungraten_US
dc.contributor.authorJos Vanrenterghemen_US
dc.contributor.otherLiverpool John Moores Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherKU Leuvenen_US
dc.date.accessioned2018-12-21T06:46:52Z
dc.date.accessioned2019-03-14T08:02:50Z
dc.date.available2018-12-21T06:46:52Z
dc.date.available2019-03-14T08:02:50Z
dc.date.issued2017-07-01en_US
dc.description.abstract© 2017 Elsevier B.V. When investigating whole-body balance in dynamic tasks, adequately tracking the whole-body centre of mass (CoM) or derivatives such as the extrapolated centre of mass (XCoM) can be crucial but add considerable measurement efforts. The aim of this study was to investigate whether reduced kinematic models can still provide adequate CoM and XCoM representations during dynamic sporting tasks. Seventeen healthy recreationally active subjects (14 males and 3 females; age, 24.9 ± 3.2 years; height, 177.3 ± 6.9 cm; body mass 72.6 ± 7.0 kg) participated in this study. Participants completed three dynamic movements, jumping, kicking, and overarm throwing. Marker-based kinematic data were collected with 10 optoelectronic cameras at 250 Hz (Oqus Qualisys, Gothenburg, Sweden). The differences between (X)CoM from a full-body model (gold standard) and (X)CoM representations based on six selected model reductions were evaluated using a Bland-Altman approach. A threshold difference was set at ±2 cm to help the reader interpret which model can still provide an acceptable (X)CoM representation. Antero-posterior and medio-lateral displacement profiles of the CoM representation based on lower limbs, trunk and upper limbs showed strong agreement, slightly reduced for lower limbs and trunk only. Representations based on lower limbs only showed less strong agreement, particularly for XCoM in kicking. Overall, our results provide justification of the use of certain model reductions for specific needs, saving measurement effort whilst limiting the error of tracking (X)CoM trajectories in the context of whole-body balance investigation.en_US
dc.identifier.citationGait and Posture. Vol.56, (2017), 37-41en_US
dc.identifier.doi10.1016/j.gaitpost.2017.04.036en_US
dc.identifier.issn18792219en_US
dc.identifier.issn09666362en_US
dc.identifier.other2-s2.0-85019023197en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/41836
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019023197&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleCan segmental model reductions quantify whole-body balance accurately during dynamic activities?en_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019023197&origin=inwarden_US

Files

Collections