Publication:
Compactness of operator integrators

dc.contributor.authorTitarii Wootijirattikalen_US
dc.contributor.authorSing Cheong Ongen_US
dc.contributor.authorYongwimon Lenburyen_US
dc.contributor.otherUbon Rajathanee Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCentral Michigan Universityen_US
dc.contributor.otherCenter of Excellence in Mathematicsen_US
dc.date.accessioned2020-01-27T09:14:43Z
dc.date.available2020-01-27T09:14:43Z
dc.date.issued2019-03-01en_US
dc.description.abstract© 2019, Element D.O.O.. All rights reserved. A function f from a closed interval [a,b] to a Banach space X is a regulated function if one-sided limits of f exist at every point. A function α from [a,b] to the space B(X,Y), of bounded linear transformations form X to a Banach space Y,issaidtobeanintegrator if for each X-valued regulated function f, the Riemann-Stieltjes sums (with sampling points in the interior of subintervals) of f with respect to α converge in Y. We use elementary methods to establish criteria for an integrator α to induce a compact linear transformation from the space, Reg(X), ofX-valued regulated functions to Y. We give direct and elementary proofs for each result to be used, including, among other things, the fact that each integrator α induces a bounded linear transformation, α, from Reg(X) to Y, and other folklore or known results which required reading large amount of literature.en_US
dc.identifier.citationOperators and Matrices. Vol.13, No.1 (2019), 93-110en_US
dc.identifier.doi10.7153/oam-2019-13-06en_US
dc.identifier.issn18463886en_US
dc.identifier.other2-s2.0-85070768082en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/51229
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070768082&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleCompactness of operator integratorsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070768082&origin=inwarden_US

Files

Collections