Publication:
Hybridization Cascade Plus Strand-Displacement Isothermal Amplification of RNA Target with Secondary Structure Motifs and Its Application for Detecting Dengue and Zika Viruses

dc.contributor.authorW. Saisuken_US
dc.contributor.authorC. Srisawaten_US
dc.contributor.authorS. Yoksanen_US
dc.contributor.authorT. Dharakulen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherFaculty of Medicine, Siriraj Hospital, Mahidol Universityen_US
dc.date.accessioned2020-01-27T08:14:11Z
dc.date.available2020-01-27T08:14:11Z
dc.date.issued2019-03-05en_US
dc.description.abstract© 2019 American Chemical Society. Biological RNA generally comprises secondary structure motifs which cause a problem for target RNA detection by isothermal amplification methods. The complexity of the secondary structures makes RNA targets inaccessible for probe hybridization, resulting in decreased sensitivity and selectivity. This is particularly important because the hybridization step of the isothermal amplification method requires a limited temperature range. A strand-displacement strategy can enhance the hybridization efficiency between the probe and target RNA with secondary structure motifs. A short, single-stranded segment within the secondary structure can be used as a toehold for initiating strand displacement. The strategy has been used to establish a highly sensitive isothermal amplification by a combination of a hairpin probe hybridization and strand-displacement amplification. The hairpin probe is placed on the single-stranded segment of the target RNA's secondary structure to initiate strand displacement. The probe's hybridization cascade provides a template for exponential amplification in two directions by strand-displacement amplification, designated hybridization cascade plus strand-displacement isothermal amplification (HyCaSD). The method requires no reverse transcription step. HyCaSD showed an excellent sensitivity with the limit of detection in the femtomolar (fM) range for synthetic targets as well as viral RNAs. Discrimination between DENV/ZIKV and JEV/CHIKV was successfully demonstrated using real viruses. Therefore, HyCaSD is a promising platform that can be further developed for diagnostic applications.en_US
dc.identifier.citationAnalytical Chemistry. Vol.91, No.5 (2019), 3286-3293en_US
dc.identifier.doi10.1021/acs.analchem.8b03736en_US
dc.identifier.issn15206882en_US
dc.identifier.issn00032700en_US
dc.identifier.other2-s2.0-85061999978en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50576
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061999978&origin=inwarden_US
dc.subjectChemistryen_US
dc.titleHybridization Cascade Plus Strand-Displacement Isothermal Amplification of RNA Target with Secondary Structure Motifs and Its Application for Detecting Dengue and Zika Virusesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061999978&origin=inwarden_US

Files

Collections